@article{ReiterGenslerRitteretal.2012, author = {Reiter, Theresa and Gensler, Daniel and Ritter, Oliver and Weiss, Ingo and Geistert, Wolfgang and Kaufmann, Ralf and Hoffmeister, Sabine and Friedrich, Michael T. and Wintzheimer, Stefan and D{\"u}ring, Markus and Nordbeck, Peter and Jakob, Peter M. and Ladd, Mark E. and Quick, Harald H. and Bauer, Wolfgang R.}, title = {Direct cooling of the catheter tip increases safety for CMR-guided electrophysiological procedures}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {14}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {12}, doi = {10.1186/1532-429X-14-12}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134927}, year = {2012}, abstract = {Background: One of the safety concerns when performing electrophysiological (EP) procedures under magnetic resonance (MR) guidance is the risk of passive tissue heating due to the EP catheter being exposed to the radiofrequency (RF) field of the RF transmitting body coil. Ablation procedures that use catheters with irrigated tips are well established therapeutic options for the treatment of cardiac arrhythmias and when used in a modified mode might offer an additional system for suppressing passive catheter heating. Methods: A two-step approach was chosen. Firstly, tests on passive catheter heating were performed in a 1.5 T Avanto system (Siemens Healthcare Sector, Erlangen, Germany) using a ASTM Phantom in order to determine a possible maximum temperature rise. Secondly, a phantom was designed for simulation of the interface between blood and the vascular wall. The MR-RF induced temperature rise was simulated by catheter tip heating via a standard ablation generator. Power levels from 1 to 6 W were selected. Ablation duration was 120 s with no tip irrigation during the first 60 s and irrigation at rates from 2 ml/min to 35 ml/min for the remaining 60 s (Biotronik Qiona Pump, Berlin, Germany). The temperature was measured with fluoroscopic sensors (Luxtron, Santa Barbara, CA, USA) at a distance of 0 mm, 2 mm, 4 mm, and 6 mm from the catheter tip. Results: A maximum temperature rise of 22.4 degrees C at the catheter tip was documented in the MR scanner. This temperature rise is equivalent to the heating effect of an ablator's power output of 6 W at a contact force of the weight of 90 g (0.883 N). The catheter tip irrigation was able to limit the temperature rise to less than 2 degrees C for the majority of examined power levels, and for all examined power levels the residual temperature rise was less than 8 degrees C. Conclusion: Up to a maximum of 22.4 degrees C, the temperature rise at the tissue surface can be entirely suppressed by using the catheter's own irrigation system. The irrigated tip system can be used to increase MR safety of EP catheters by suppressing the effects of unwanted passive catheter heating due to RF exposure from the MR scanner.}, language = {en} } @article{LiSamnickLapaetal.2012, author = {Li, Xiang and Samnick, Samuel and Lapa, Constantin and Israel, Ina and Buck, Andreas K. and Kreissl, Michael C. and Bauer, Wolfgang}, title = {68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with18F-FDG, calcium burden and risk factors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76231}, year = {2012}, abstract = {Background: Ga-[1,4,7,10-tetraazacyclododecane-N,N0,N00,N000-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) positron emission tomography (PET) is commonly used for the visualization of somatostatin receptor (SSTR)-positive neuroendocrine tumors. SSTR is also known to be expressed on macrophages, which play a major role in inflammatory processes in the walls of coronary arteries and large vessels. Therefore, imaging SSTR expression has the potential to visualize vulnerable plaques. We assessed 68Ga-DOTATATE accumulation in large vessels in comparison to 18F-2-fluorodeoxyglucose (FDG) uptake, calcified plaques (CPs), and cardiovascular risk factors. Methods: Sixteen consecutive patients with neuroendocrine tumors or thyroid cancer underwent both 68Ga-DOTATATE and 18F-FDG PET/CT for staging or restaging purposes. Detailed clinical data, including common cardiovascular risk factors, were recorded. For a separate assessment, they were divided into a high-risk and a low-risk group. In each patient, we calculated the maximum target-to-background ratio (TBR) of eight arterial segments. The correlation of the TBRmean of both tracers with risk factors including plaque burden was assessed. Results: The mean TBR of 68Ga-DOTATATE in all large arteries correlated significantly with the presence of CPs (r = 0.52; p < 0.05), hypertension (r = 0.60; p < 0.05), age (r = 0.56; p < 0.05), and uptake of 18F-FDG (r = 0.64; p < 0.01). There was one significant correlation between 18F-FDG uptake and hypertension (0.58; p < 0.05). Out of the 37 sites with the highest focal 68Ga-DOTATATE uptake, 16 (43.2\%) also had focal 18F-FDG uptake. Of 39 sites with the highest 18F-FDG uptake, only 11 (28.2\%) had a colocalized 68Ga-DOTATATE accumulation. Conclusions: In this series of cancer patients, we found a stronger association of increased 68Ga-DOTATATE uptake with known risk factors of cardiovascular disease as compared to 18F-FDG, suggesting a potential role for plaque imaging in large arteries. Strikingly, we found that focal uptake of 68Ga-DOTATATE and 18F-FDG does not colocalize in a significant number of lesions.}, subject = {Medizin}, language = {en} } @article{AeschlimannBauerBayeretal.2012, author = {Aeschlimann, Martin and Bauer, Michael and Bayer, Daniela and Brixner, Tobias and Cunovic, Stefan and Fischer, Alexander and Melchior, Pascal and Pfeiffer, Walter and Rohmer, Martin and Schneider, Christian and Str{\"u}ber, Christian and Tuchscherer, Philip and Voronine, Dimitri V.}, title = {Optimal open-loop near-field control of plasmonic nanostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75256}, year = {2012}, abstract = {Optimal open-loop control, i.e. the application of an analytically derived control rule, is demonstrated for nanooptical excitations using polarization-shaped laser pulses. Optimal spatial near-field localization in gold nanoprisms and excitation switching is realized by applying a shift to the relative phase of the two polarization components. The achieved near-field switching confirms theoretical predictions, proves the applicability of predefined control rules in nanooptical light-matter interaction and reveals local mode interference to be an important control mechanism.}, subject = {Chemie}, language = {en} }