@article{FarmerStrzelczykFinisguerraetal.2021, author = {Farmer, Adam D. and Strzelczyk, Adam and Finisguerra, Alessandra and Gourine, Alexander V. and Gharabaghi, Alireza and Hasan, Alkomiet and Burger, Andreas M. and Jaramillo, Andr{\´e}s M. and Mertens, Ann and Majid, Arshad and Verkuil, Bart and Badran, Bashar W. and Ventura-Bort, Carlos and Gaul, Charly and Beste, Christian and Warren, Christopher M. and Quintana, Daniel S. and H{\"a}mmerer, Dorothea and Freri, Elena and Frangos, Eleni and Tobaldini, Eleonora and Kaniusas, Eugenijus and Rosenow, Felix and Capone, Fioravante and Panetsos, Fivos and Ackland, Gareth L. and Kaithwas, Gaurav and O'Leary, Georgia H. and Genheimer, Hannah and Jacobs, Heidi I. L. and Van Diest, Ilse and Schoenen, Jean and Redgrave, Jessica and Fang, Jiliang and Deuchars, Jim and Sz{\´e}les, Jozsef C. and Thayer, Julian F. and More, Kaushik and Vonck, Kristl and Steenbergen, Laura and Vianna, Lauro C. and McTeague, Lisa M. and Ludwig, Mareike and Veldhuizen, Maria G. and De Couck, Marijke and Casazza, Marina and Keute, Marius and Bikson, Marom and Andreatta, Marta and D'Agostini, Martina and Weymar, Mathias and Betts, Matthew and Prigge, Matthias and Kaess, Michael and Roden, Michael and Thai, Michelle and Schuster, Nathaniel M. and Montano, Nicola and Hansen, Niels and Kroemer, Nils B. and Rong, Peijing and Fischer, Rico and Howland, Robert H. and Sclocco, Roberta and Sellaro, Roberta and Garcia, Ronald G. and Bauer, Sebastian and Gancheva, Sofiya and Stavrakis, Stavros and Kampusch, Stefan and Deuchars, Susan A. and Wehner, Sven and Laborde, Sylvain and Usichenko, Taras and Polak, Thomas and Zaehle, Tino and Borges, Uirassu and Teckentrup, Vanessa and Jandackova, Vera K. and Napadow, Vitaly and Koenig, Julian}, title = {International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)}, series = {Frontiers in Human Neuroscience}, volume = {14}, journal = {Frontiers in Human Neuroscience}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.568051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234346}, year = {2021}, abstract = {Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.}, language = {en} } @article{WinterAndelovicKampfetal.2021, author = {Winter, Patrick M. and Andelovic, Kristina and Kampf, Thomas and Hansmann, Jan and Jakob, Peter Michael and Bauer, Wolfgang Rudolf and Zernecke, Alma and Herold, Volker}, title = {Simultaneous measurements of 3D wall shear stress and pulse wave velocity in the murine aortic arch}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {23}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {1}, doi = {10.1186/s12968-021-00725-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259152}, pages = {34}, year = {2021}, abstract = {Purpose Wall shear stress (WSS) and pulse wave velocity (PWV) are important parameters to characterize blood flow in the vessel wall. Their quantification with flow-sensitive phase-contrast (PC) cardiovascular magnetic resonance (CMR), however, is time-consuming. Furthermore, the measurement of WSS requires high spatial resolution, whereas high temporal resolution is necessary for PWV measurements. For these reasons, PWV and WSS are challenging to measure in one CMR session, making it difficult to directly compare these parameters. By using a retrospective approach with a flexible reconstruction framework, we here aimed to simultaneously assess both PWV and WSS in the murine aortic arch from the same 4D flow measurement. Methods Flow was measured in the aortic arch of 18-week-old wildtype (n = 5) and ApoE\(^{-/-}\) mice (n = 5) with a self-navigated radial 4D-PC-CMR sequence. Retrospective data analysis was used to reconstruct the same dataset either at low spatial and high temporal resolution (PWV analysis) or high spatial and low temporal resolution (WSS analysis). To assess WSS, the aortic lumen was labeled by semi-automatically segmenting the reconstruction with high spatial resolution. WSS was determined from the spatial velocity gradients at the lumen surface. For calculation of the PWV, segmentation data was interpolated along the temporal dimension. Subsequently, PWV was quantified from the through-plane flow data using the multiple-points transit-time method. Reconstructions with varying frame rates and spatial resolutions were performed to investigate the influence of spatiotemporal resolution on the PWV and WSS quantification. Results 4D flow measurements were conducted in an acquisition time of only 35 min. Increased peak flow and peak WSS values and lower errors in PWV estimation were observed in the reconstructions with high temporal resolution. Aortic PWV was significantly increased in ApoE\(^{-/-}\) mice compared to the control group (1.7 ± 0.2 versus 2.6 ± 0.2 m/s, p < 0.001). Mean WSS magnitude values averaged over the aortic arch were (1.17 ± 0.07) N/m\(^2\) in wildtype mice and (1.27 ± 0.10) N/m\(^2\) in ApoE\(^{-/-}\) mice. Conclusion The post processing algorithm using the flexible reconstruction framework developed in this study permitted quantification of global PWV and 3D-WSS in a single acquisition. The possibility to assess both parameters in only 35 min will markedly improve the analyses and information content of in vivo measurements.}, language = {en} } @article{AndelovicWinterKampfetal.2021, author = {Andelovic, Kristina and Winter, Patrick and Kampf, Thomas and Xu, Anton and Jakob, Peter Michael and Herold, Volker and Bauer, Wolfgang Rudolf and Zernecke, Alma}, title = {2D Projection Maps of WSS and OSI Reveal Distinct Spatiotemporal Changes in Hemodynamics in the Murine Aorta during Ageing and Atherosclerosis}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {12}, issn = {2227-9059}, doi = {10.3390/biomedicines9121856}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252164}, year = {2021}, abstract = {Growth, ageing and atherosclerotic plaque development alter the biomechanical forces acting on the vessel wall. However, monitoring the detailed local changes in wall shear stress (WSS) at distinct sites of the murine aortic arch over time has been challenging. Here, we studied the temporal and spatial changes in flow, WSS, oscillatory shear index (OSI) and elastic properties of healthy wildtype (WT, n = 5) and atherosclerotic apolipoprotein E-deficient (Apoe\(^{-/-}\), n = 6) mice during ageing and atherosclerosis using high-resolution 4D flow magnetic resonance imaging (MRI). Spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated, allowing the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and local correlations between WSS, pulse wave velocity (PWV), plaque and vessel wall characteristics. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe\(^{-/-}\) mice, and we identified the circumferential WSS as potential marker of plaque size and composition in advanced atherosclerosis and the radial strain as a potential marker for vascular elasticity. Two-dimensional (2D) projection maps of WSS and OSI, including statistical analysis provide a powerful tool to monitor local aortic hemodynamics during ageing and atherosclerosis. The correlation of spatially resolved hemodynamics and plaque characteristics could significantly improve our understanding of the impact of hemodynamics on atherosclerosis, which may be key to understand plaque progression towards vulnerability.}, language = {en} } @article{AndelovicWinterJakobetal.2021, author = {Andelovic, Kristina and Winter, Patrick and Jakob, Peter Michael and Bauer, Wolfgang Rudolf and Herold, Volker and Zernecke, Alma}, title = {Evaluation of plaque characteristics and inflammation using magnetic resonance imaging}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {2}, issn = {2227-9059}, doi = {10.3390/biomedicines9020185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228839}, year = {2021}, abstract = {Atherosclerosis is an inflammatory disease of large and medium-sized arteries, characterized by the growth of atherosclerotic lesions (plaques). These plaques often develop at inner curvatures of arteries, branchpoints, and bifurcations, where the endothelial wall shear stress is low and oscillatory. In conjunction with other processes such as lipid deposition, biomechanical factors lead to local vascular inflammation and plaque growth. There is also evidence that low and oscillatory shear stress contribute to arterial remodeling, entailing a loss in arterial elasticity and, therefore, an increased pulse-wave velocity. Although altered shear stress profiles, elasticity and inflammation are closely intertwined and critical for plaque growth, preclinical and clinical investigations for atherosclerosis mostly focus on the investigation of one of these parameters only due to the experimental limitations. However, cardiovascular magnetic resonance imaging (MRI) has been demonstrated to be a potent tool which can be used to provide insights into a large range of biological parameters in one experimental session. It enables the evaluation of the dynamic process of atherosclerotic lesion formation without the need for harmful radiation. Flow-sensitive MRI provides the assessment of hemodynamic parameters such as wall shear stress and pulse wave velocity which may replace invasive and radiation-based techniques for imaging of the vascular function and the characterization of early plaque development. In combination with inflammation imaging, the analyses and correlations of these parameters could not only significantly advance basic preclinical investigations of atherosclerotic lesion formation and progression, but also the diagnostic clinical evaluation for early identification of high-risk plaques, which are prone to rupture. In this review, we summarize the key applications of magnetic resonance imaging for the evaluation of plaque characteristics through flow sensitive and morphological measurements. The simultaneous measurements of functional and structural parameters will further preclinical research on atherosclerosis and has the potential to fundamentally improve the detection of inflammation and vulnerable plaques in patients.}, language = {en} } @article{LawitschkaBrunmairBaueretal.2021, author = {Lawitschka, Anita and Brunmair, Matthias and Bauer, Dorothea and Zubarovskaya, Natalia and Felder-Puig, Rosemarie and Strahm, Brigitte and Bader, Peter and Strauss, Gabriele and Albert, Michael and Luettichau, Irene von and Greinix, Hildegard and Wolff, Daniel and Peters, Christina}, title = {Psychometric properties of the Activities Scale for Kids-performance after allogeneic hematopoietic stem cell transplantation in adolescents and children}, series = {Wiener klinische Wochenschrift}, volume = {133}, journal = {Wiener klinische Wochenschrift}, number = {1-2}, doi = {10.1007/s00508-020-01641-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281100}, pages = {41-51}, year = {2021}, abstract = {Background The psychometric properties of an instrument, the Activity Scale for Kids-performance (ASKp), were assessed which was proposed to capture physical functioning after allogeneic hematopoietic stem cell transplantation (HSCT). Additionally, this multicenter observational prospective study investigated the influence of clinical correlates focusing on chronic graft-versus-host disease (cGVHD). Methods Patient-reported ASKp, clinician-reported Karnofsky/Lansky status (KPS/PSS), patient characteristics and cGVHD details were assessed of 55 patients with a median age of 12 years at baseline after day +100 post-HSCT and every 3 months during the next 18 months. The psychometric properties were evaluated and ASKp and KPS/PSS status was compared using ANOVAS and multiple regression models. Results The German version of the ASKp showed good psychometric properties except for ceiling effects. Discrimination ability of the ASKp was good regarding the need for devices but failed to predict cGVHD patients. Both the ASKp and the KPS/PSS were associated with patients after adoptive cell therapy being in need for devices, suffering from overlap cGVHD and from steroid side effects but not with patients' age and gender. In contrast to the KPS/PSS the ASKp only showed significant differences after merging moderate and severe cGHVD patients when comparing them to No-cGVHD (F = 4.050; p = 0.049), being outperformed by the KPS/PSS (F = 20.082; p < 0.001). Conclusion The ASKp showed no clear advantages compared to KPS/PSS even though economical and patients' effort was higher. Further application range may be limited through ceiling effects. Both should be taken into consideration. Therefore, the results may not support the usage of ASKp after HSCT and rather suggest KPS/PSS, both patient and clinician reported.}, language = {en} }