@article{OcakDrechslerVossenetal.2014, author = {Ocak, Gurbey and Drechsler, Christiane and Vossen, Carla Y. and Vos, Hans L. and Rosendaal, Frits R. and Reitsma, Pieter H. and Hoffmann, Michael M. and M{\"a}rz, Winfried and Ouwehand, Willem H. and Krediet, Raymond T. and Boeschoten, Elisabeth W. and Dekker, Frido W. and Wanner, Christoph and Verduijn, Marion}, title = {Single Nucleotide Variants in the Protein C Pathway and Mortality in Dialysis Patients}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {5}, issn = {1932-6203}, doi = {10.1371/journal.pone.0097251}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116265}, pages = {e97251}, year = {2014}, abstract = {Background: The protein C pathway plays an important role in the maintenance of endothelial barrier function and in the inflammatory and coagulant processes that are characteristic of patients on dialysis. We investigated whether common single nucleotide variants (SNV) in genes encoding protein C pathway components were associated with all-cause 5 years mortality risk in dialysis patients. Methods: Single nucleotides variants in the factor V gene (F5 rs6025; factor V Leiden), the thrombomodulin gene (THBD rs1042580), the protein C gene (PROC rs1799808 and 1799809) and the endothelial protein C receptor gene (PROCR rs867186, rs2069951, and rs2069952) were genotyped in 1070 dialysis patients from the NEtherlands COoperative Study on the Adequacy of Dialysis (NECOSAD) cohort) and in 1243 dialysis patients from the German 4D cohort. Results: Factor V Leiden was associated with a 1.5-fold (95\% CI 1.1-1.9) increased 5-year all-cause mortality risk and carriers of the AG/GG genotypes of the PROC rs1799809 had a 1.2-fold (95\% CI 1.0-1.4) increased 5-year all-cause mortality risk. The other SNVs in THBD, PROC, and PROCR were not associated with 5-years mortality. Conclusion: Our study suggests that factor V Leiden and PROC rs1799809 contributes to an increased mortality risk in dialysis patients.}, language = {en} } @article{IyengarSedorFreedmanetal.2015, author = {Iyengar, Sudha K. and Sedor, John R. and Freedman, Barry I. and Kao, W. H. Linda and Kretzler, Matthias and Keller, Benjamin J. and Abboud, Hanna E. and Adler, Sharon G. and Best, Lyle G. and Bowden, Donald W. and Burlock, Allison and Chen, Yii-Der Ida and Cole, Shelley A. and Comeau, Mary E. and Curtis, Jeffrey M. and Divers, Jasmin and Drechsler, Christiane and Duggirala, Ravi and Elston, Robert C. and Guo, Xiuqing and Huang, Huateng and Hoffmann, Michael Marcus and Howard, Barbara V. and Ipp, Eli and Kimmel, Paul L. and Klag, Michael J. and Knowler, William C. and Kohn, Orly F. and Leak, Tennille S. and Leehey, David J. and Li, Man and Malhotra, Alka and M{\"a}rz, Winfried and Nair, Viji and Nelson, Robert G. and Nicholas, Susanne B. and O'Brien, Stephen J. and Pahl, Madeleine V. and Parekh, Rulan S. and Pezzolesi, Marcus G. and Rasooly, Rebekah S. and Rotimi, Charles N. and Rotter, Jerome I. and Schelling, Jeffrey R. and Seldin, Michael F. and Shah, Vallabh O. and Smiles, Adam M. and Smith, Michael W. and Taylor, Kent D. and Thameem, Farook and Thornley-Brown, Denyse P. and Truitt, Barbara J. and Wanner, Christoph and Weil, E. Jennifer and Winkler, Cheryl A. and Zager, Philip G. and Igo, Jr, Robert P. and Hanson, Robert L. and Langefeld, Carl D.}, title = {Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease: Family Investigation of Nephropathy and Diabetes (FIND)}, series = {PLoS Genetics}, volume = {11}, journal = {PLoS Genetics}, number = {8}, doi = {10.1371/journal.pgen.1005352}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180545}, pages = {e1005352}, year = {2015}, abstract = {Diabetic kidney disease (DKD) is the most common etiology of chronic kidney disease (CKD) in the industrialized world and accounts for much of the excess mortality in patients with diabetes mellitus. Approximately 45\% of U.S. patients with incident end-stage kidney disease (ESKD) have DKD. Independent of glycemic control, DKD aggregates in families and has higher incidence rates in African, Mexican, and American Indian ancestral groups relative to European populations. The Family Investigation of Nephropathy and Diabetes (FIND) performed a genome-wide association study (GWAS) contrasting 6,197 unrelated individuals with advanced DKD with healthy and diabetic individuals lacking nephropathy of European American, African American, Mexican American, or American Indian ancestry. A large-scale replication and trans-ethnic meta-analysis included 7,539 additional European American, African American and American Indian DKD cases and non-nephropathy controls. Within ethnic group meta-analysis of discovery GWAS and replication set results identified genome-wide significant evidence for association between DKD and rs12523822 on chromosome 6q25.2 in American Indians (P = 5.74x10\(^{-9}\)). The strongest signal of association in the trans-ethnic meta-analysis was with a SNP in strong linkage disequilibrium with rs12523822 (rs955333; P = 1.31x10\(^{-8}\)), with directionally consistent results across ethnic groups. These 6q25.2 SNPs are located between the SCAF8 and CNKSR3 genes, a region with DKD relevant changes in gene expression and an eQTL with IPCEF1, a gene co-translated with CNKSR3. Several other SNPs demonstrated suggestive evidence of association with DKD, within and across populations. These data identify a novel DKD susceptibility locus with consistent directions of effect across diverse ancestral groups and provide insight into the genetic architecture of DKD.}, language = {en} } @article{GuneschHoffmannKiermeieretal.2020, author = {Gunesch, Sandra and Hoffmann, Matthias and Kiermeier, Carolina and Fischer, Wolfgang and Pinto, Antonio F. M. and Maurice, Tangui and Maher, Pamela and Decker, Michael}, title = {7-O-Esters of taxifolin with pronounced and overadditive effects in neuroprotection, anti-neuroinflammation, and amelioration of short-term memory impairment in vivo}, series = {Redox Biology}, volume = {29}, journal = {Redox Biology}, doi = {10.1016/j.redox.2019.101378}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202718}, pages = {101378}, year = {2020}, abstract = {Alzheimer's disease (AD) is a multifactorial disease and the most common form of dementia. There are no treatments to cure, prevent or slow down the progression of the disease. Natural products hold considerable interest for the development of preventive neuroprotectants to treat neurodegenerative disorders like AD, due to their low toxicity and general beneficial effects on human health with their anti-inflammatory and antioxidant features. In this work we describe regioselective synthesis of 7-O-ester hybrids of the flavonoid taxifolin with the phenolic acids cinnamic and ferulic acid, namely 7-O-cinnamoyltaxifolin and 7-O-feruloyltaxifolin. The compounds show pronounced overadditive neuroprotective effects against oxytosis, ferroptosis and ATP depletion in the murine hippocampal neuron HT22 cell model. Furthermore, 7-O-cinnamoyltaxifolin and 7-O-feruloyltaxifolin reduced LPS-induced neuroinflammation in BV-2 microglia cells as assessed by effects on the levels of NO, IL6 and TNFα. In all in vitro assays the 7-O-esters of taxifolin and ferulic or cinnamic acid showed strong overadditive activity, significantly exceeding the effects of the individual components and the equimolar mixtures thereof, which were almost inactive in all of the assays at the tested concentrations. In vivo studies confirmed this overadditive effect. Treatment of an AD mouse model based on the injection of oligomerized Aβ\(_{25-35}\) peptide into the brain to cause neurotoxicity and subsequently memory deficits with 7-O-cinnamoyltaxifolin or 7-O-feruloyltaxifolin resulted in improved performance in an assay for short-term memory as compared to vehicle and mice treated with the respective equimolar mixtures. These results highlight the benefits of natural product hybrids as a novel compound class with potential use for drug discovery in neurodegenerative diseases due to their pharmacological profile that is distinct from the individual natural components.}, language = {en} } @article{CarstenAGorskiLietal.2011, author = {Carsten A., B{\"o}ger and Gorski, Mathias and Li, Man and Hoffmann, Michael M. and Huang, Chunmei and Yang, Qiong and Teumer, Alexander and Krane, Vera and O'Seaghdha, Conall M. and Kutalik, Zolt{\´a}n and Wichmann, H.-Erich and Haak, Thomas and Boes, Eva and Coassin, Stefan and Coresh, Josef and Kollerits, Barbara and Haun, Margot and Paulweber, Bernhard and K{\"o}ttgen, Anna and Li, Guo and Shlipak, Michael G. and Powe, Neil and Hwang, Shih-Jen and Dehghan, Abbas and Rivadeneira, Fernando and Uitterlinden, Andr{\´e} and Hofman, Albert and Beckmann, Jacques S. and Kr{\"a}mer, Bernhard K. and Witteman, Jacqueline and Bochud, Murielle and Siscovick, David and Rettig, Rainer and Kronenberg, Florian and Wanner, Christoph and Thadhani, Ravi I. and Heid, Iris M. and Fox, Caroline S. and Kao, W.H.}, title = {Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD}, series = {PLoS Genetics}, volume = {7}, journal = {PLoS Genetics}, number = {9}, doi = {10.1371/journal.pgen.1002292}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133758}, pages = {e1002292}, year = {2011}, abstract = {Family studies suggest a genetic component to the etiology of chronic kidney disease (CKD) and end stage renal disease (ESRD). Previously, we identified 16 loci for eGFR in genome-wide association studies, but the associations of these single nucleotide polymorphisms (SNPs) for incident CKD or ESRD are unknown. We thus investigated the association of these loci with incident CKD in 26,308 individuals of European ancestry free of CKD at baseline drawn from eight population-based cohorts followed for a median of 7.2 years (including 2,122 incident CKD cases defined as eGFR < 60ml/min/1.73m(2) at follow-up) and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls). SNPs at 11 of the 16 loci (UMOD, PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, and GCKR) were associated with incident CKD; p-values ranged from p = 4.1e-9 in UMOD to p = 0.03 in GCKR. After adjusting for baseline eGFR, six of these loci remained significantly associated with incident CKD (UMOD, PRKAG2, ANXA9, DAB2, DACH1, and STC1). SNPs in UMOD (OR = 0.92, p = 0.04) and GCKR (OR = 0.93, p = 0.03) were nominally associated with ESRD. In summary, the majority of eGFR-related loci are either associated or show a strong trend towards association with incident CKD, but have modest associations with ESRD in individuals of European descent. Additional work is required to characterize the association of genetic determinants of CKD and ESRD at different stages of disease progression.}, language = {en} }