@article{HolzapfelProdingerPilgeetal.2013, author = {Holzapfel, Boris Michael and Prodinger, Peter M. and Pilge, Hakan and Banke, Ingo J. and B{\"u}rklein, Dominik and Miethke, Thomas and Gradinger, Reiner}, title = {Acute Osteomyelitis of the Humerus mimicking Malignancy: Streptococcus pneumoniae as Exceptional Pathogen in an Immunocompetent Adult}, series = {BMC Infectious Diseases}, journal = {BMC Infectious Diseases}, doi = {10.1186/1471-2334-13-266}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-95790}, year = {2013}, abstract = {Background Chronic osteomyelitis due to direct bone trauma or vascular insufficiency is a frequent problem in orthopaedic surgery. In contrast, acute haematogenous osteomyelitis represents a rare entity that almost exclusively affects prepubescent children or immunodeficient adults. Case Presentation In this article, we report the case of acute pneumococcal osteomyelitis of the humerus in an immunocompetent and otherwise healthy 44-year-old male patient presenting with minor inflammation signs and misleading clinical features. Conclusions The diagnosis had to be confirmed by open biopsy which allowed the initiation of a targeted therapy. A case of pneumococcal osteomyelitis of a long bone, lacking predisposing factors or trauma, is unique in adults and has not been reported previously.}, language = {en} } @article{HennessenMiethkeZaburannyietal.2020, author = {Hennessen, Fabienne and Miethke, Marcus and Zaburannyi, Nestor and Loose, Maria and Lukežič, Tadeja and Bernecker, Steffen and H{\"u}ttel, Stephan and Jansen, Rolf and Schmiedel, Judith and Fritzenwanker, Moritz and Imirzalioglu, Can and Vogel, J{\"o}rg and Westermann, Alexander J. and Hesterkamp, Thomas and Stadler, Marc and Wagenlehner, Florian and Petković, Hrvoje and Herrmann, Jennifer and M{\"u}ller, Rolf}, title = {Amidochelocardin overcomes resistance mechanisms exerted on tetracyclines and natural chelocardin}, series = {Antibiotics}, volume = {9}, journal = {Antibiotics}, number = {9}, issn = {2079-6382}, doi = {10.3390/antibiotics9090619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213149}, year = {2020}, abstract = {The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound.}, language = {en} }