@article{EndesfelderMalkuschFlottmannetal.2011, author = {Endesfelder, Ulrike and Malkusch, Sebastian and Flottmann, Benjamin and Mondry, Justine and Liguzinski, Piotr and Verveer, Peter J. and Heilemann, Mike}, title = {Chemically Induced Photoswitching of Fluorescent Probes - A General Concept for Super-Resolution Microscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74896}, year = {2011}, abstract = {We review fluorescent probes that can be photoswitched or photoactivated and are suited for single-molecule localization based super-resolution microscopy. We exploit the underlying photochemical mechanisms that allow photoswitching of many synthetic organic fluorophores in the presence of reducing agents, and study the impact of these on the photoswitching properties of various photoactivatable or photoconvertible fluorescent proteins. We have identified mEos2 as a fluorescent protein that exhibits reversible photoswitching under various imaging buffer conditions and present strategies to characterize reversible photoswitching. Finally, we discuss opportunities to combine fluorescent proteins with organic fluorophores for dual-color photoswitching microscopy.}, subject = {Super-Resolution Microscopy}, language = {en} } @article{DietzHasseFerrarisetal.2013, author = {Dietz, Mariana S. and Hasse, Daniel and Ferraris, Davide M. and G{\"o}hler, Antonia and Niemann, Hartmut H. and Heilemann, Mike}, title = {Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells}, series = {BMC Biophysics}, volume = {6}, journal = {BMC Biophysics}, number = {6}, issn = {2046-1682}, doi = {10.1186/2046-1682-6-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121835}, year = {2013}, abstract = {Background: The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane. Results: To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding. Conclusions: Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases.}, language = {en} } @article{LandoEndesfelderBergeretal.2012, author = {Lando, David and Endesfelder, Ulrike and Berger, Harald and Subramanian, Lakxmi and Dunne, Paul D. and McColl, James and Klenerman, David and Carr, Antony M. and Sauer, Markus and Allshire, Robin C. and Heilemann, Mike and Laue, Ernest D.}, title = {Quantitative single-molecule microscopy reveals that CENP-A\(^{Cnp1}\) deposition occurs during G2 in fission yeast}, series = {Open Biology}, volume = {2}, journal = {Open Biology}, number = {120078}, doi = {10.1098/rsob.120078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134682}, year = {2012}, abstract = {The inheritance of the histone H3 variant CENP-A in nucleosomes at centromeres following DNA replication is mediated by an epigenetic mechanism. To understand the process of epigenetic inheritance, or propagation of histones and histone variants, as nucleosomes are disassembled and reassembled in living eukaryotic cells, we have explored the feasibility of exploiting photo-activated localization microscopy (PALM). PALM of single molecules in living cells has the potential to reveal new concepts in cell biology, providing insights into stochastic variation in cellular states. However, thus far, its use has been limited to studies in bacteria or to processes occurring near the surface of eukaryotic cells. With PALM, one literally observes and 'counts' individual molecules in cells one-by-one and this allows the recording of images with a resolution higher than that determined by the diffraction of light (the so-called super-resolution microscopy). Here, we investigate the use of different fluorophores and develop procedures to count the centromere-specific histone H3 variant CENP-A\(^{Cnp1}\) with single-molecule sensitivity in fission yeast (Schizosaccharomyces pombe). The results obtained are validated by and compared with ChIP-seq analyses. Using this approach, CENP-A\(^{Cnp1}\) levels at fission yeast (S. pombe) centromeres were followed as they change during the cell cycle. Our measurements show that CENP-A(Cnp1) is deposited solely during the G2 phase of the cell cycle.}, language = {en} } @article{EndesfelderMalkuschFlottmannetal.2011, author = {Endesfelder, Ulrike and Malkusch, Sebastian and Flottmann, Benjamin and Mondry, Justine and Liguzinski, Piotr and Verveer, Peter J. and Heilemann, Mike}, title = {Chemically Induced Photoswitching of Fluorescent Probes - A General Concept for Super-Resolution Microscopy}, series = {Molecules}, volume = {16}, journal = {Molecules}, number = {4}, doi = {10.3390/molecules16043106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134080}, pages = {3106-3118}, year = {2011}, abstract = {We review fluorescent probes that can be photoswitched or photoactivated and are suited for single-molecule localization based super-resolution microscopy. We exploit the underlying photochemical mechanisms that allow photoswitching of many synthetic organic fluorophores in the presence of reducing agents, and study the impact of these on the photoswitching properties of various photoactivatable or photoconvertible fluorescent proteins. We have identified mEos2 as a fluorescent protein that exhibits reversible photoswitching under various imaging buffer conditions and present strategies to characterize reversible photoswitching. Finally, we discuss opportunities to combine fluorescent proteins with organic fluorophores for dual-color photoswitching microscopy.}, language = {en} } @article{EckhardtAndersMuranyietal.2011, author = {Eckhardt, Manon and Anders, Maria and Muranyi, Walter and Heilemann, Mike and Krijnse-Locker, Jacomine and M{\"u}ller, Barbara}, title = {A SNAP-Tagged Derivative of HIV-1-A Versatile Tool to Study Virus-Cell Interactions}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0022007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133534}, pages = {e22007}, year = {2011}, abstract = {Fluorescently labeled human immunodeficiency virus (HIV) derivatives, combined with the use of advanced fluorescence microscopy techniques, allow the direct visualization of dynamic events and individual steps in the viral life cycle. HIV proteins tagged with fluorescent proteins (FPs) have been successfully used for live-cell imaging analyses of HIV-cell interactions. However, FPs display limitations with respect to their physicochemical properties, and their maturation kinetics. Furthermore, several independent FP-tagged constructs have to be cloned and characterized in order to obtain spectral variations suitable for multi-color imaging setups. In contrast, the so-called SNAP-tag represents a genetically encoded non-fluorescent tag which mediates specific covalent coupling to fluorescent substrate molecules in a self-labeling reaction. Fusion of the SNAP-tag to the protein of interest allows specific labeling of the fusion protein with a variety of synthetic dyes, thereby offering enhanced flexibility for fluorescence imaging approaches. Here we describe the construction and characterization of the HIV derivative HIV(SNAP), which carries the SNAP-tag as an additional domain within the viral structural polyprotein Gag. Introduction of the tag close to the C-terminus of the matrix domain of Gag did not interfere with particle assembly, release or proteolytic virus maturation. The modified virions were infectious and could be propagated in tissue culture, albeit with reduced replication capacity. Insertion of the SNAP domain within Gag allowed specific staining of the viral polyprotein in the context of virus producing cells using a SNAP reactive dye as well as the visualization of individual virions and viral budding sites by stochastic optical reconstruction microscopy. Thus, HIV(SNAP) represents a versatile tool which expands the possibilities for the analysis of HIV-cell interactions using live cell imaging and sub-diffraction fluorescence microscopy.}, language = {en} } @article{NanguneriFlottmannHorstmannetal.2012, author = {Nanguneri, Siddharth and Flottmann, Benjamin and Horstmann, Heinz and Heilemann, Mike and Kuner, Thomas}, title = {Three-Dimensional, Tomographic Super-Resolution Fluorescence Imaging of Serially Sectioned Thick Samples}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {5}, doi = {10.1371/journal.pone.0038098}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134434}, pages = {e38098}, year = {2012}, abstract = {Three-dimensional fluorescence imaging of thick tissue samples with near-molecular resolution remains a fundamental challenge in the life sciences. To tackle this, we developed tomoSTORM, an approach combining single-molecule localization-based super-resolution microscopy with array tomography of structurally intact brain tissue. Consecutive sections organized in a ribbon were serially imaged with a lateral resolution of 28 nm and an axial resolution of 40 nm in tissue volumes of up to 50 \(\mu\)mx50\(\mu\)mx2.5\(\mu\)m. Using targeted expression of membrane bound (m)GFP and immunohistochemistry at the calyx of Held, a model synapse for central glutamatergic neurotransmission, we delineated the course of the membrane and fine-structure of mitochondria. This method allows multiplexed super-resolution imaging in large tissue volumes with a resolution three orders of magnitude better than confocal microscopy.}, language = {en} } @article{SporbertCseresnyesHeidbrederetal.2013, author = {Sporbert, Anje and Cseresnyes, Zoltan and Heidbreder, Meike and Domaing, Petra and Hauser, Stefan and Kaltschmidt, Barbara and Kaltschmidt, Christian and Heilemann, Mike and Widera, Darius}, title = {Simple Method for Sub-Diffraction Resolution Imaging of Cellular Structures on Standard Confocal Microscopes by Three-Photon Absorption of Quantum Dots}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0064023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130963}, pages = {e64023}, year = {2013}, abstract = {This study describes a simple technique that improves a recently developed 3D sub-diffraction imaging method based on three-photon absorption of commercially available quantum dots. The method combines imaging of biological samples via tri-exciton generation in quantum dots with deconvolution and spectral multiplexing, resulting in a novel approach for multi-color imaging of even thick biological samples at a 1.4 to 1.9-fold better spatial resolution. This approach is realized on a conventional confocal microscope equipped with standard continuous-wave lasers. We demonstrate the potential of multi-color tri-exciton imaging of quantum dots combined with deconvolution on viral vesicles in lentivirally transduced cells as well as intermediate filaments in three-dimensional clusters of mouse-derived neural stem cells (neurospheres) and dense microtubuli arrays in myotubes formed by stacks of differentiated C2C12 myoblasts.}, language = {en} } @article{MuranyiMalkuschMuelleretal.2013, author = {Muranyi, Walter and Malkusch, Sebastian and M{\"u}ller, Barbara and Heilemann, Mike and Kr{\"a}usslich, Hans-Georg}, title = {Super-Resolution Microscopy Reveals Specific Recruitment of HIV-1 Envelope Proteins to Viral Assembly Sites Dependent on the Envelope C-Terminal Tail}, series = {PLoS Pathogens}, volume = {9}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1003198}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131235}, pages = {e1003198}, year = {2013}, abstract = {The inner structural Gag proteins and the envelope (Env) glycoproteins of human immunodeficiency virus (HIV-1) traffic independently to the plasma membrane, where they assemble the nascent virion. HIV-1 carries a relatively low number of glycoproteins in its membrane, and the mechanism of Env recruitment and virus incorporation is incompletely understood. We employed dual-color super-resolution microscopy visualizing Gag assembly sites and HIV-1 Env proteins in virus-producing and in Env expressing cells. Distinctive HIV-1 Gag assembly sites were readily detected and were associated with Env clusters that always extended beyond the actual Gag assembly site and often showed enrichment at the periphery and surrounding the assembly site. Formation of these Env clusters depended on the presence of other HIV-1 proteins and on the long cytoplasmic tail (CT) of Env. CT deletion, a matrix mutation affecting Env incorporation or Env expression in the absence of other HIV-1 proteins led to much smaller Env clusters, which were not enriched at viral assembly sites. These results show that Env is recruited to HIV-1 assembly sites in a CT-dependent manner, while Env\((\Delta CT)\) appears to be randomly incorporated. The observed Env accumulation surrounding Gag assemblies, with a lower density on the actual bud, could facilitate viral spread in vivo. Keeping Env molecules on the nascent virus low may be important for escape from the humoral immune response, while cell-cell contacts mediated by surrounding Env molecules could promote HIV-1 transmission through the virological synapse.}, language = {en} } @article{WolterEndesfelderLindeetal.2011, author = {Wolter, Steve and Endesfelder, Ulrike and Linde, Sebastian van de and Heilemann, Mike and Sauer, Markus}, title = {Measuring localization performance of super-resolution algorithms on very active samples}, series = {Optics Express}, journal = {Optics Express}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85936}, year = {2011}, abstract = {Super-resolution fluorescence imaging based on inglemolecule localization relies critically on the availability of efficient processing algorithms to distinguish, identify, and localize emissions of single fluorophores. In multiple current applications, such as threedimensional, time-resolved or cluster imaging, high densities of fluorophore emissions are common. Here, we provide an analytic tool to test the performance and quality of localization microscopy algorithms and demonstrate that common algorithms encounter difficulties for samples with high fluorophore density. We demonstrate that, for typical single-molecule localization microscopy methods such as dSTORM and the commonly used rapidSTORM scheme, computational precision limits the acceptable density of concurrently active fluorophores to 0.6 per square micrometer and that the number of successfully localized fluorophores per frame is limited to 0.2 per square micrometer.}, language = {en} } @article{WeineltKarathanasisSmithetal.2021, author = {Weinelt, Nadine and Karathanasis, Christos and Smith, Sonja and Medler, Juliane and Malkusch, Sebastian and Fulda, Simone and Wajant, Harald and Heilemann, Mike and van Wijk, Sjoerd J. L.}, title = {Quantitative single-molecule imaging of TNFR1 reveals zafirlukast as antagonist of TNFR1 clustering and TNFα-induced NF-ĸB signaling}, series = {Journal of Leukocyte Biology}, volume = {109}, journal = {Journal of Leukocyte Biology}, number = {2}, doi = {10.1002/JLB.2AB0420-572RR}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215960}, pages = {363 -- 371}, year = {2021}, abstract = {TNFR1 is a crucial regulator of NF-ĸB-mediated proinflammatory cell survival responses and programmed cell death (PCD). Deregulation of TNFα- and TNFR1-controlled NF-ĸB signaling underlies major diseases, like cancer, inflammation, and autoimmune diseases. Therefore, although being routinely used, antagonists of TNFα might also affect TNFR2-mediated processes, so that alternative approaches to directly antagonize TNFR1 are beneficial. Here, we apply quantitative single-molecule localization microscopy (SMLM) of TNFR1 in physiologic cellular settings to validate and characterize TNFR1 inhibitory substances, exemplified by the recently described TNFR1 antagonist zafirlukast. Treatment of TNFR1-mEos2 reconstituted TNFR1/2 knockout mouse embryonic fibroblasts (MEFs) with zafirlukast inhibited both ligand-independent preligand assembly domain (PLAD)-mediated TNFR1 dimerization as well as TNFα-induced TNFR1 oligomerization. In addition, zafirlukast-mediated inhibition of TNFR1 clustering was accompanied by deregulation of acute and prolonged NF-ĸB signaling in reconstituted TNFR1-mEos2 MEFs and human cervical carcinoma cells. These findings reveal the necessity of PLAD-mediated, ligand-independent TNFR1 dimerization for NF-ĸB activation, highlight the PLAD as central regulator of TNFα-induced TNFR1 oligomerization, and demonstrate that TNFR1-mEos2 MEFs can be used to investigate TNFR1-antagonizing compounds employing single-molecule quantification and functional NF-ĸB assays at physiologic conditions.}, language = {en} }