@article{HeydarianSchweinlinSchwarzetal.2021, author = {Heydarian, Motaharehsadat and Schweinlin, Matthias and Schwarz, Thomas and Rawal, Ravisha and Walles, Heike and Metzger, Marco and Rudel, Thomas and Kozjak-Pavlovic, Vera}, title = {Triple co-culture and perfusion bioreactor for studying the interaction between Neisseria gonorrhoeae and neutrophils: A novel 3D tissue model for bacterial infection and immunity}, series = {Journal of Tissue Engineering}, volume = {12}, journal = {Journal of Tissue Engineering}, doi = {10.1177/2041731420988802}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259032}, pages = {2041731420988802}, year = {2021}, abstract = {Gonorrhea, a sexually transmitted disease caused by the bacteria Neisseria gonorrhoeae, is characterized by a large number of neutrophils recruited to the site of infection. Therefore, proper modeling of the N. gonorrhoeae interaction with neutrophils is very important for investigating and understanding the mechanisms that gonococci use to evade the immune response. We have used a combination of a unique human 3D tissue model together with a dynamic culture system to study neutrophil transmigration to the site of N. gonorrhoeae infection. The triple co-culture model consisted of epithelial cells (T84 human colorectal carcinoma cells), human primary dermal fibroblasts, and human umbilical vein endothelial cells on a biological scaffold (SIS). After the infection of the tissue model with N. gonorrhoeae, we introduced primary human neutrophils to the endothelial side of the model using a perfusion-based bioreactor system. By this approach, we were able to demonstrate the activation and transmigration of neutrophils across the 3D tissue model and their recruitment to the site of infection. In summary, the triple co-culture model supplemented by neutrophils represents a promising tool for investigating N. gonorrhoeae and other bacterial infections and interactions with the innate immunity cells under conditions closely resembling the native tissue environment.}, language = {en} } @article{HerbertFickHeydarianetal.2022, author = {Herbert, Saskia-Laureen and Fick, Andrea and Heydarian, Motaharehsadat and Metzger, Marco and W{\"o}ckel, Achim and Rudel, Thomas and Kozjak-Pavlovic, Vera and Wulff, Christine}, title = {Establishment of the SIS scaffold-based 3D model of human peritoneum for studying the dissemination of ovarian cancer}, series = {Journal of Tissue Engineering}, volume = {13}, journal = {Journal of Tissue Engineering}, issn = {2041-7314}, doi = {10.1177/20417314221088514}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301311}, pages = {1}, year = {2022}, abstract = {Ovarian cancer is the second most common gynecological malignancy in women. More than 70\% of the cases are diagnosed at the advanced stage, presenting as primary peritoneal metastasis, which results in a poor 5-year survival rate of around 40\%. Mechanisms of peritoneal metastasis, including adhesion, migration, and invasion, are still not completely understood and therapeutic options are extremely limited. Therefore, there is a strong requirement for a 3D model mimicking the in vivo situation. In this study, we describe the establishment of a 3D tissue model of the human peritoneum based on decellularized porcine small intestinal submucosa (SIS) scaffold. The SIS scaffold was populated with human dermal fibroblasts, with LP-9 cells on the apical side representing the peritoneal mesothelium, while HUVEC cells on the basal side of the scaffold served to mimic the endothelial cell layer. Functional analyses of the transepithelial electrical resistance (TEER) and the FITC-dextran assay indicated the high barrier integrity of our model. The histological, immunohistochemical, and ultrastructural analyses showed the main characteristics of the site of adhesion. Initial experiments using the SKOV-3 cell line as representative for ovarian carcinoma demonstrated the usefulness of our models for studying tumor cell adhesion, as well as the effect of tumor cells on endothelial cell-to-cell contacts. Taken together, our data show that the novel peritoneal 3D tissue model is a promising tool for studying the peritoneal dissemination of ovarian cancer.}, language = {en} }