@article{LekszasNandaVonaetal.2019, author = {Lekszas, Caroline and Nanda, Indrajit and Vona, Barbara and B{\"o}ck, Julia and Ashrafzadeh, Farah and Donyadideh, Nahid and Ebrahimzadeh, Farnoosh and Ahangari, Najmeh and Maroofian, Reza and Karimiani, Ehsan Ghayoor and Haaf, Thomas}, title = {Unbalanced segregation of a paternal t(9;11)(p24.3;p15.4) translocation causing familial Beckwith-Wiedemann syndrome: a case report}, series = {BMC Medical Genomics}, volume = {12}, journal = {BMC Medical Genomics}, doi = {10.1186/s12920-019-0539-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200422}, pages = {83}, year = {2019}, abstract = {Background The vast majority of cases with Beckwith-Wiedemann syndrome (BWS) are caused by a molecular defect in the imprinted chromosome region 11p15.5. The underlying mechanisms include epimutations, uniparental disomy, copy number variations, and structural rearrangements. In addition, maternal loss-of-function mutations in CDKN1C are found. Despite growing knowledge on BWS pathogenesis, up to 20\% of patients with BWS phenotype remain without molecular diagnosis. Case presentation Herein, we report an Iranian family with two females affected with BWS in different generations. Bisulfite pyrosequencing revealed hypermethylation of the H19/IGF2: intergenic differentially methylated region (IG DMR), also known as imprinting center 1 (IC1) and hypomethylation of the KCNQ1OT1: transcriptional start site (TSS) DMR (IC2). Array CGH demonstrated an 8 Mb duplication on chromosome 11p15.5p15.4 (205,827-8,150,933) and a 1 Mb deletion on chromosome 9p24.3 (209,020-1,288,114). Chromosome painting revealed that this duplication-deficiency in both patients is due to unbalanced segregation of a paternal reciprocal t(9;11)(p24.3;p15.4) translocation. Conclusions This is the first report of a paternally inherited unbalanced translocation between the chromosome 9 and 11 short arms underlying familial BWS. Copy number variations involving the 11p15.5 region are detected by the consensus diagnostic algorithm. However, in complex cases which do not only affect the BWS region itself, characterization of submicroscopic chromosome rearrangements can assist to estimate the recurrence risk and possible phenotypic outcomes.}, language = {en} } @article{VonaMaroofianBellacchioetal.2018, author = {Vona, Barbara and Maroofian, Reza and Bellacchio, Emanuele and Najafi, Maryam and Thompson, Kyle and Alahmad, Ahmad and He, Langping and Ahangari, Najmeh and Rad, Abolfazl and Shahrokhzadeh, Sima and Bahena, Paulina and Mittag, Falk and Traub, Frank and Movaffagh, Jebrail and Amiri, Nafise and Doosti, Mohammad and Boostani, Reza and Shirzadeh, Ebrahim and Haaf, Thomas and Diodato, Daria and Schmidts, Miriam and Taylor, Robert W. and Karimiani, Ehsan Ghayoor}, title = {Expanding the clinical phenotype of IARS2-related mitochondrial disease}, series = {BMC Medical Genetics}, volume = {19}, journal = {BMC Medical Genetics}, number = {196}, doi = {10.1186/s12881-018-0709-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176620}, year = {2018}, abstract = {Background: IARS2 encodes a mitochondrial isoleucyl-tRNA synthetase, a highly conserved nuclear-encoded enzyme required for the charging of tRNAs with their cognate amino acid for translation. Recently, pathogenic IARS2 variants have been identified in a number of patients presenting broad clinical phenotypes with autosomal recessive inheritance. These phenotypes range from Leigh and West syndrome to a new syndrome abbreviated CAGSSS that is characterised by cataracts, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, and skeletal dysplasia, as well as cataract with no additional anomalies. Methods: Genomic DNA from Iranian probands from two families with consanguineous parental background and overlapping CAGSSS features were subjected to exome sequencing and bioinformatics analysis. Results: Exome sequencing and data analysis revealed a novel homozygous missense variant (c.2625C > T, p.Pro909Ser, NM_018060.3) within a 14.3 Mb run of homozygosity in proband 1 and a novel homozygous missense variant (c.2282A > G, p.His761Arg) residing in an ~ 8 Mb region of homozygosity in a proband of the second family. Patient-derived fibroblasts from proband 1 showed normal respiratory chain enzyme activity, as well as unchanged oxidative phosphorylation protein subunits and IARS2 levels. Homology modelling of the known and novel amino acid residue substitutions in IARS2 provided insight into the possible consequence of these variants on function and structure of the protein. Conclusions: This study further expands the phenotypic spectrum of IARS2 pathogenic variants to include two patients (patients 2 and 3) with cataract and skeletal dysplasia and no other features of CAGSSS to the possible presentation of the defects in IARS2. Additionally, this study suggests that adult patients with CAGSSS may manifest central adrenal insufficiency and type II esophageal achalasia and proposes that a variable sensorineural hearing loss onset, proportionate short stature, polyneuropathy, and mild dysmorphic features are possible, as seen in patient 1. Our findings support that even though biallelic IARS2 pathogenic variants can result in a distinctive, clinically recognisable phenotype in humans, it can also show a wide range of clinical presentation from severe pediatric neurological disorders of Leigh and West syndrome to both non-syndromic cataract and cataract accompanied by skeletal dysplasia.}, language = {en} }