@article{MatsusakaWernerAriasLozaetal.2022, author = {Matsusaka, Yohji and Werner, Rudolf A. and Arias-Loza, Paula and Nose, Naoko and Sasaki, Takanori and Chen, Xinyu and Lapa, Constantin and Higuchi, Takahiro}, title = {Performance Evaluation of a Preclinical SPECT Scanner with a Collimator Designed for Medium-Sized Animals}, series = {Molecular Imaging}, volume = {2022}, journal = {Molecular Imaging}, doi = {10.1155/2022/9810097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300713}, year = {2022}, abstract = {Background. Equipped with two stationary detectors, a large bore collimator for medium-sized animals has been recently introduced for dedicated preclinical single-photon emission computed tomography (SPECT) imaging. We aimed to evaluate the basic performance of the system using phantoms and healthy rabbits. Methods. A general-purpose medium-sized animal (GP-MSA) collimator with 135 mm bore diameter and thirty-three holes of 2.5 mm diameter was installed on an ultrahigh-resolution scanner equipped with two large stationary detectors (U-SPECT5-E/CT). The sensitivity and uniformity were investigated using a point source and a cylinder phantom containing 99mTc-pertechnetate, respectively. Uniformity (in \%) was derived using volumes of interest (VOIs) on images of the cylinder phantom and calculated as , with lower values of \% indicating superior performance. The spatial resolution and contrast-to-noise ratios (CNRs) were evaluated with images of a hot-rod Derenzo phantom using different activity concentrations. Feasibility of in vivo SPECT imaging was finally confirmed by rabbit imaging with the most commonly used clinical myocardial perfusion SPECT agent [99mTc]Tc-sestamibi (dynamic acquisition with a scan time of 5 min). Results. In the performance evaluation, a sensitivity of 790 cps/MBq, a spatial resolution with the hot-rod phantom of 2.5 mm, and a uniformity of 39.2\% were achieved. The CNRs of the rod size 2.5 mm were 1.37, 1.24, 1.20, and 0.85 for activity concentration of 29.2, 1.0, 0.5, and 0.1 MBq/mL, respectively. Dynamic SPECT imaging in rabbits allowed to visualize most of the thorax and to generate time-activity curves of the left myocardial wall and ventricular cavity. Conclusion. Preclinical U-SPECT5-E/CT equipped with a large bore collimator demonstrated adequate sensitivity and resolution for in vivo rabbit imaging. Along with its unique features of SPECT molecular functional imaging is a superior collimator technology that is applicable to medium-sized animal models and thus may promote translational research for diagnostic purposes and development of novel therapeutics.}, language = {en} } @article{MatsusakaChenAriasLozaetal.2022, author = {Matsusaka, Yohji and Chen, Xinyu and Arias-Loza, Paula and Werner, Rudolf A. and Nose, Naoko and Sasaki, Takanori and Rowe, Steven P. and Pomper, Martin G. and Lapa, Constantin and Higuchi, Takahiro}, title = {In Vivo Functional Assessment of Sodium-Glucose Cotransporters (SGLTs) Using [\(^{18}\)F]Me4FDG PET in Rats}, series = {Molecular Imaging}, volume = {2022}, journal = {Molecular Imaging}, doi = {10.1155/2022/4635171}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300708}, year = {2022}, abstract = {Background. Mediating glucose absorption in the small intestine and renal clearance, sodium glucose cotransporters (SGLTs) have emerged as an attractive therapeutic target in diabetic patients. A substantial fraction of patients, however, only achieve inadequate glycemic control. Thus, we aimed to assess the potential of the SGLT-targeting PET radiotracer alpha-methyl-4-deoxy-4-[\(^{18}\)F]fluoro-D-glucopyranoside ([\(^{18}\)F]Me4FDG) as a noninvasive intestinal and renal biomarker of SGLT-mediated glucose transport. Methods. We investigated healthy rats using a dedicated small animal PET system. Dynamic imaging was conducted after administration of the reference radiotracer 2-deoxy-2-[\(^{18}\)F]fluoro-D-glucose ([\(^{18}\)F]FDG), or the SGLT-targeting agent, [\(^{18}\)F]Me4FDG either directly into the digestive tract (for assessing intestinal absorption) or via the tail vein (for evaluating kidney excretion). To confirm the specificity of [18F]Me4FDG and responsiveness to treatment, a subset of animals was also pretreated with the SGLT inhibitor phlorizin. In this regard, an intraintestinal route of administration was used to assess tracer absorption in the digestive tract, while for renal assessment, phlorizin was injected intravenously (IV). Results. Serving as reference, intestinal administration of [\(^{18}\)F]FDG led to slow absorption with retention of \% of administered radioactivity at 15 min. [\(^{18}\)F]Me4FDG, however, was rapidly absorbed into the blood and cleared from the intestine within 15 min, leading to markedly lower tracer retention of \% (). Intraintestinal phlorizin led to marked increase of [\(^{18}\)F]Me4FDG uptake (15 min, \%; vs. untreated controls), supporting the notion that this PET agent can measure adequate SGLT inhibition in the digestive tract. In the kidneys, radiotracer was also sensitive to SGLT inhibition. After IV injection, [\(^{18}\)F]Me4FDG reabsorption in the renal cortex was significantly suppressed by phlorizin when compared to untreated animals (\%ID/g at 60 min, vs. untreated controls, ; ). Conclusion. As a noninvasive read-out of the concurrent SGLT expression in both the digestive tract and the renal cortex, [\(^{18}\)F]Me4FDG PET may serve as a surrogate marker for treatment response to SGLT inhibition. As such, [\(^{18}\)F]Me4FDG may enable improvement in glycemic control in diabetes by PET-based monitoring strategies.}, language = {en} } @article{WernerHiguchiNoseetal.2022, author = {Werner, Rudolf A. and Higuchi, Takahiro and Nose, Naoko and Toriumi, Fujio and Matsusaka, Yohji and Kuji, Ichiei and Kazuhiro, Koshino}, title = {Generative adversarial network-created brain SPECTs of cerebral ischemia are indistinguishable to scans from real patients}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, doi = {10.1038/s41598-022-23325-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300757}, year = {2022}, abstract = {Deep convolutional generative adversarial networks (GAN) allow for creating images from existing databases. We applied a modified light-weight GAN (FastGAN) algorithm to cerebral blood flow SPECTs and aimed to evaluate whether this technology can generate created images close to real patients. Investigating three anatomical levels (cerebellum, CER; basal ganglia, BG; cortex, COR), 551 normal (248 CER, 174 BG, 129 COR) and 387 pathological brain SPECTs using N-isopropyl p-I-123-iodoamphetamine (123I-IMP) were included. For the latter scans, cerebral ischemic disease comprised 291 uni- (66 CER, 116 BG, 109 COR) and 96 bilateral defect patterns (44 BG, 52 COR). Our model was trained using a three-compartment anatomical input (dataset 'A'; including CER, BG, and COR), while for dataset 'B', only one anatomical region (COR) was included. Quantitative analyses provided mean counts (MC) and left/right (LR) hemisphere ratios, which were then compared to quantification from real images. For MC, 'B' was significantly different for normal and bilateral defect patterns (P < 0.0001, respectively), but not for unilateral ischemia (P = 0.77). Comparable results were recorded for LR, as normal and ischemia scans were significantly different relative to images acquired from real patients (P ≤ 0.01, respectively). Images provided by 'A', however, revealed comparable quantitative results when compared to real images, including normal (P = 0.8) and pathological scans (unilateral, P = 0.99; bilateral, P = 0.68) for MC. For LR, only uni- (P = 0.03), but not normal or bilateral defect scans (P ≥ 0.08) reached significance relative to images of real patients. With a minimum of only three anatomical compartments serving as stimuli, created cerebral SPECTs are indistinguishable to images from real patients. The applied FastGAN algorithm may allow to provide sufficient scan numbers in various clinical scenarios, e.g., for "data-hungry" deep learning technologies or in the context of orphan diseases.}, language = {en} }