@phdthesis{Dabas2008, author = {Dabas, Neelam}, title = {Control of Nitrogen Regulated Virulence Traits of the Human Fungal Pathogen Candida albicans}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29769}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Der Hefepilz Candida albicans ist ein harmloser Kommensale auf den Schleimh{\"a}uten des Gastrointestinal- und Urogenitaltrakts der meisten gesunden Menschen. Bei einer St{\"o}rung der nat{\"u}rlichen Mikroflora oder des Wirtsimmunsystems kann der Pilz jedoch auch oberfl{\"a}chliche und sogar systemische Infektionen verursachen. C. albicans weist eine Reihe von Eigenschaften auf, die zur Virulenz des Erregers beitragen. Dazu geh{\"o}ren die Adh{\"a}renz an unterschiedliche Wirtsoberfl{\"a}chen, die morphologische Variabilit{\"a}t des Pilzes und die Sekretion von Aspartatproteasen. Die Expression vieler dieser Virulenzfaktoren wird unter anderem durch die Verf{\"u}gbarkeit von Stickstoff reguliert. Unter Stickstoffmangelbedingungen wechselt C. albicans vom Wachstum als sprossende Hefe zum filament{\"o}sen Wachstum, und dieser Wechsel wird durch die Ammoniumpermease Mep2p reguliert. Wie die Induktion des filament{\"o}sen Wachstums durch Mep2p kontrolliert wird, ist jedoch weitgehend unbekannt. In der vorliegenden Arbeit wurde eine Mutationsanalyse von Mep2p durchgef{\"u}hrt, um Aminos{\"a}uren zu identifizieren, die an der Signalfunktion dieser Permease beteiligt sind. Die C-terminale cytoplasmatische Dom{\"a}ne von Mep2p wird f{\"u}r den Ammoniumtransport nicht ben{\"o}tigt, ist jedoch essentiell f{\"u}r die Signaltransduktion. Progressive C-terminale Verk{\"u}rzungen von Mep2p zeigten, dass ein MEP2DC433-Allel immer noch in der Lage war, das filament{\"o}se Wachstum zu induzieren, wohingegen die Deletion einer weiteren Aminos{\"a}ure die Morphogenese blockierte. Das Tyrosin an Position 433 (Y433) ist deshalb die letzte Aminos{\"a}ure, die f{\"u}r die Signalfunktion von Mep2p essentiell ist. Um besser zu verstehen, wie die Signalaktivit{\"a}t von Mep2p durch die Verf{\"u}gbarkeit und den Transport von Ammonium reguliert wird, wurden verschiedene hochkonservierte Aminos{\"a}uren mutiert, die vermutlich an der Bindung oder dem Transport von Ammonium in die Zelle beteiligt sind. Die Mutation von D180, von dem postuliert wurde, dass es den initialen Kontakt mit extrazellul{\"a}rem Ammonium erm{\"o}glicht, oder der im Transportkanal lokalisierten Histidine H188 und H342 hatte zur Folge, dass Mep2p nicht mehr exprimiert wurde, so dass diese Aminos{\"a}uren vermutlich f{\"u}r die Proteinstabilit{\"a}t wichtig sind. Die Mutation von F239, das zusammen mit F126 eine extracytosolische Pforte zur Transportpore bildet, verhinderte trotz korrekter Membranlokalisation sowohl den Ammoniumtransport als auch das filament{\"o}se Wachstum. Allerdings f{\"u}hrte auch die Mutation von W167, das vermutlich zusammen mit Y122, F126 und S243 an der Rekrutierung des Ammoniumions an der extrazellul{\"a}ren Seite der Membran beteiligt ist, zur Blockierung des filament{\"o}sen Wachstums, obwohl der Ammoniumtransport kaum beeinflusst war. Dies zeigte, dass die intrazellu{\"a}re Signaltransduktion durch extrazellul{\"a}re Ver{\"a}nderungen in Mep2p beeinflusst werden kann. Die Mutation von Y122 reduzierte die Ammoniumaufnahme weitaus starker als die Mutation von W167, erlaubte jedoch immer noch ein effizientes filament{\"o}ses Wachstum. Die Signalaktivit{\"a}t von Mep2p ist deshalb offensichtlich nicht direkt mit der Transportaktivit{\"a}t des Proteins korreliert. Ein wichtiger Aspekt in der F{\"a}higkeit von Mep2p, die Morphogenese zu stimulieren, ist die vergleichsweise starke Expression des Proteins. Um die Regulation der MEP2-Expression aufzukl{\"a}ren, wurden die cis-regulatorischen Sequenzen und die trans-aktivierenden Faktoren, die die MEP2-Induktion unter Stickstoffmangel vermitteln, identifiziert. Eine Promotoranalyse zeigte, dass zwei mutmaßliche Bindungsstellen f{\"u}r GATA-Transkriptionsfaktoren eine zentrale Rolle in der MEP2-Expression haben, da die Deletion oder Mutation dieser GATAA-Sequenzen die Expression von MEP2 stark reduzierte. Um die Rolle der GATA-Transkriptionsfaktoren Gln3p und Gat1p bei der Regulation der MEP2-Expression zu untersuchen, wurden Mutanten hergestellt, in denen die entsprechenden Gene deletiert waren. Die Expression von Mep2p war in gln3D und gat1D Einzelmutanten stark verringert und in gln3D gat1D Doppelmutanten nicht mehr nachweisbar. Die Deletion von GLN3 hatte auch eine starke Reduktion des filament{\"o}sen Wachstums zur Folge, die durch die konstitutive Expression von MEP2 unter Kontrolle des ADH1-Promotors aufgehoben wurde. Dagegen hatte die Deletion von GAT1 keinen Einfluss auf das filament{\"o}se Wachstum. {\"U}berraschenderweise war das filament{\"o}se Wachstum in den gat1D Mutanten teilweise unabh{\"a}ngig von Mep2p, was darauf hinwies, dass in Abwesenheit von GAT1 andere Signalwege aktiviert werden, die die Morphogenese stimulieren. Diese Ergebnisse zeigten, dass die GATA-Transkriptionsfaktoren Gln3p und Gat1p die Expression der Ammoniumpermease MEP2 kontrollieren und dass Gln3p auch ein wichtiger Regulator des durch Stickstoffmangel induzierten filament{\"o}sen Wachstums von C. albicans ist. Mutanten, in denen die beiden GATA-Transkriptionsfaktoren Gln3p und Gat1p fehlten, waren nicht mehr in der Lage, in einem Medium zu wachsen, das bovines Serumalbumin (BSA) als einzige Stickstoffquelle enth{\"a}lt. Die F{\"a}higkeit von C. albicans, Proteine als einzige Stickstoffquelle zum Wachstum zu verwenden, wird durch die sekretierte Aspartatprotease Sap2p, die die Proteine zu Peptiden abbaut, und durch Oligopeptidtransporter, die diese Peptide in die Zelle aufnehmen, vermittelt. Der Wachstumsdefekt der gln3D gat1D Doppelmutanten war haupts{\"a}chlich durch einen Defekt in der SAP2-Expression verursacht, da die Expression von SAP2 unter Kontrolle des konstitutiven ADH1-Promotors die F{\"a}higkeit zum Wachstum auf BSA wieder herstellte. Es zeigte sich, dass Gln3p und Gat1p die Expression des Transkriptionsfaktors STP1, der f{\"u}r die Induktion von SAP2 in Gegenwart von Proteinen notwendig ist, regulieren. Bei einer Expression von STP1 unter Kontrolle des induzierbaren Tet-Promotors waren Gln3p und Gat1p nicht mehr notwendig f{\"u}r das Wachstum auf Proteinen. Wenn bevorzugte Stickstoffquellen verf{\"u}gbar sind, wird SAP2 auch in Gegenwart von Proteinen reprimiert, und diese Stickstoff-Katabolitrepression korrelierte mit einer reduzierten STP1-Expression. Die Expression von STP1 unter Kontrolle des Tet-Promotors hob diese Repression auf, was zeigte, dass die Regulation der STP1-Expression durch die GATA-Transkriptionsfaktoren eine Schl{\"u}sselrolle sowohl bei der positiven als auch bei der negativen Kontrolle der SAP2-Expression spielt. Eine regulatorische Kaskade, in der die Expression des spezifischen Transkriptionsfaktors Stp1p durch die allgemeinen Regulatoren Gln3p und Gat1p kontrolliert wird, stellt die Expression von SAP2 in C. albicans deshalb unter Stickstoffkontrolle und gew{\"a}hrleistet eine angepasste Expression dieses Virulenzfaktors. Die Ergebnisse dieser Arbeit illustrieren, dass die GATA-Faktoren Gln3p und Gat1p zum Teil {\"u}berlappende aber auch spezifische Funktionen in der Anpassung von C. albicans an die Verf{\"u}gbarkeit verschiedener Stickstoffquellen haben. Diese Anpassungsmechanismen spielen auch eine Rolle in der Pathogenit{\"a}t des Pilzes, wobei die relative Bedeutung von Gln3p und Gat1p vom Zielgen und der Stickstoffquelle abh{\"a}ngt. Diese Erkenntnisse geben einen vertieften Eiblick in die molekularen Grundlagen der Anpassung von C. albicans an unterschiedliche Umweltbedingungen.}, subject = {Transkriptionsfaktor}, language = {en} }