@article{WeisschuhWissingerGramer2012, author = {Weisschuh, Nicole and Wissinger, Bernd and Gramer, Eugen}, title = {A splice site mutation in the PAX6 gene which induces exon skipping causes autosomal dominant inherited aniridia}, series = {Molecular Vision}, volume = {18}, journal = {Molecular Vision}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124379}, pages = {751-757}, year = {2012}, abstract = {Purpose: To identify the underlying genetic cause in a two generation German family diagnosed with isolated aniridia. Methods: All patients underwent full ophthalmic examination. Mutation screening of the paired box gene 6 (PAX6) was performed by bidirectional Sanger sequencing. A minigene assay was applied to analyze transcript processing of mutant and wildtype PAX6 variants in HEK293 cells. Results: We identified a PAX6 sequence variant at the splice donor site (+5) of intron 12. This variant has been described before in another family with aniridia but has not been characterized at the transcript level. We could demonstrate that the mutant allele causes the skipping of exon 12 during transcript processing. The mutation is predicted to result in a 'run on' translation past the normal translational stop codon. Conclusions: A splice site mutation resulting in exon skipping was found in a family with autosomal dominant aniridia. The mutation is predicted to result in an enlarged protein with an extra COOH-terminal domain. This very likely affects the transactivation properties of the PAX6 protein.}, language = {en} } @article{WeisschuhMayerStrometal.2016, author = {Weisschuh, Nicole and Mayer, Anja K. and Strom, Tim M. and Kohl, Susanne and Gl{\"o}ckle, Nicola and Schubach, Max and Andreasson, Sten and Bernd, Antje and Birch, David G. and Hamel, Christian P. and Heckenlively, John R. and Jacobson, Samuel G. and Kamme, Christina and Kellner, Ulrich and Kunstmann, Erdmute and Maffei, Pietro and Reiff, Charlotte M. and Rohrschneider, Klaus and Rosenberg, Thomas and Rudolph, G{\"u}nther and V{\´a}mos, Rita and Vars{\´a}nyi, Bal{\´a}zs and Weleber, Richard G. and Wissinger, Bernd}, title = {Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0145951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167398}, pages = {e0145951}, year = {2016}, abstract = {Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61\% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes.}, language = {en} }