@article{WolfBraunHainingetal.2016, author = {Wolf, Karen and Braun, Attila and Haining, Elizabeth J. and Tseng, Yu-Lun and Kraft, Peter and Schuhmann, Michael K. and Gotru, Sanjeev K. and Chen, Wenchun and Hermanns, Heike M. and Stoll, Guido and Lesch, Klaus-Peter and Nieswandt, Bernhard}, title = {Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0147664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146399}, pages = {e0147664}, year = {2016}, abstract = {Background Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. Objective To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. Methods: 5-HT transporter knockout mice (5Htt\(^{-/-}\)) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. Results In 5Htt\(^{-/-}\) platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca\(^{2+}\) entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt\(^{-/-}\) platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt\(^{-/-}\) mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt\(^{-/-}\) mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. Conclusion Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization.}, language = {en} } @article{AmmarThahoulyHanaueretal.2015, author = {Ammar, Mohamed Raafet and Thahouly, Tamou and Hanauer, Andr{\´e} and Stegner, David and Nieswandt, Bernhard and Vitale, Nicolas}, title = {PLD1 participates in BDNF-induced signalling in cortical neurons}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {14778}, doi = {10.1038/srep14778}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139962}, year = {2015}, abstract = {The brain-derived neurotrophic factor BDNF plays a critical role in neuronal development and the induction of L-LTP at glutamatergic synapses in several brain regions. However, the cellular and molecular mechanisms underlying these BDNF effects have not been firmly established. Using in vitro cultures of cortical neurons from knockout mice for Pld1 and Rsk2, BDNF was observed to induce a rapid RSK2-dependent activation of PLD and to stimulate BDNF ERK1/2-CREB and mTor-S6K signalling pathways, but these effects were greatly reduced in Pld1\(^{-/-}\) neurons. Furthermore, phospho-CREB did not accumulate in the nucleus, whereas overexpression of PLD1 amplified the BDNF-dependent nuclear recruitment of phospho-ERK1/2 and phospho-CREB. This BDNF retrograde signalling was prevented in cells silenced for the scaffolding protein PEA15, a protein which complexes with PLD1, ERK1/2, and RSK2 after BDNF treatment. Finally PLD1, ERK1/2, and RSK2 partially colocalized on endosomal structures, suggesting that these proteins are part of the molecular module responsible for BDNF signalling in cortical neurons.}, language = {en} } @article{PfeifferGoetzXiangetal.2013, author = {Pfeiffer, Verena and G{\"o}tz, Rudolf and Xiang, Chaomei and Camarero, Guadelupe and Braun, Attila and Zhang, Yina and Blum, Robert and Heinsen, Helmut and Nieswandt, Bernhard and Rapp, Ulf R.}, title = {Ablation of BRaf Impairs Neuronal Differentiation in the Postnatal Hippocampus and Cerebellum}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0058259}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130304}, pages = {e58259}, year = {2013}, abstract = {This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.}, language = {en} } @article{NieswandtMorowskiBrachsetal.2014, author = {Nieswandt, Bernhard and Morowski, Martina and Brachs, Sebastian and Mielenz, Dirk and D{\"u}tting, Sebastian}, title = {The Adaptor Protein Swiprosin-1/EFhd2 Is Dispensable for Platelet Function in Mice}, doi = {10.1371/journal.pone.0107139}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113316}, year = {2014}, abstract = {Background Platelets are anuclear cell fragments derived from bone marrow megakaryocytes that safeguard vascular integrity, but may also cause pathological vessel occlusion. Reorganizations of the platelet cytoskeleton and agonist-induced intracellular Ca2+-mobilization are crucial for platelet hemostatic function. EF-hand domain containing 2 (EFhd2, Swiprosin-1) is a Ca2+-binding cytoskeletal adaptor protein involved in actin remodeling in different cell types, but its function in platelets is unknown. Objective Based on the described functions of EFhd2 in immune cells, we tested the hypothesis that EFhd2 is a crucial adaptor protein for platelet function acting as a regulator of Ca2+-mobilization and cytoskeletal rearrangements. Methods and Results We generated EFhd2-deficient mice and analyzed their platelets in vitro and in vivo. Efhd2-/- mice displayed normal platelet count and size, exhibited an unaltered in vivo life span and showed normal Ca2+-mobilization and activation/aggregation responses to classic agonists. Interestingly, upon stimulation of the immunoreceptor tyrosine-based activation motif-coupled receptor glycoprotein (GP) VI, Efhd2-/- platelets showed a slightly increased coagulant activity. Furthermore, absence of EFhd2 had no significant impact on integrin-mediated clot retraction, actomyosin rearrangements and spreading of activated platelets on fibrinogen. In vivo EFhd2-deficiency resulted in unaltered hemostatic function and unaffected arterial thrombus formation. Conclusion These results show that EFhd2 is not essential for platelet function in mice indicating that other cytoskeletal adaptors may functionally compensate its loss.}, language = {en} } @article{BalkenholKaltdorfMammadovaBachetal.2020, author = {Balkenhol, Johannes and Kaltdorf, Kristin V. and Mammadova-Bach, Elmina and Braun, Attila and Nieswandt, Bernhard and Dittrich, Marcus and Dandekar, Thomas}, title = {Comparison of the central human and mouse platelet signaling cascade by systems biological analysis}, series = {BMC Genomics}, volume = {21}, journal = {BMC Genomics}, doi = {10.1186/s12864-020-07215-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230377}, year = {2020}, abstract = {Background Understanding the molecular mechanisms of platelet activation and aggregation is of high interest for basic and clinical hemostasis and thrombosis research. The central platelet protein interaction network is involved in major responses to exogenous factors. This is defined by systemsbiological pathway analysis as the central regulating signaling cascade of platelets (CC). Results The CC is systematically compared here between mouse and human and major differences were found. Genetic differences were analysed comparing orthologous human and mouse genes. We next analyzed different expression levels of mRNAs. Considering 4 mouse and 7 human high-quality proteome data sets, we identified then those major mRNA expression differences (81\%) which were supported by proteome data. CC is conserved regarding genetic completeness, but we observed major differences in mRNA and protein levels between both species. Looking at central interactors, human PLCB2, MMP9, BDNF, ITPR3 and SLC25A6 (always Entrez notation) show absence in all murine datasets. CC interactors GNG12, PRKCE and ADCY9 occur only in mice. Looking at the common proteins, TLN1, CALM3, PRKCB, APP, SOD2 and TIMP1 are higher abundant in human, whereas RASGRP2, ITGB2, MYL9, EIF4EBP1, ADAM17, ARRB2, CD9 and ZYX are higher abundant in mouse. Pivotal kinase SRC shows different regulation on mRNA and protein level as well as ADP receptor P2RY12. Conclusions Our results highlight species-specific differences in platelet signaling and points of specific fine-tuning in human platelets as well as murine-specific signaling differences.}, language = {en} } @article{BieberSchuhmannBellutetal.2022, author = {Bieber, Michael and Schuhmann, Michael K. and Bellut, Maximilian and Stegner, David and Heinze, Katrin G. and Pham, Mirko and Nieswandt, Bernhard and Stoll, Guido}, title = {Blockade of platelet glycoprotein Ibα augments neuroprotection in Orai2-deficient mice during middle cerebral artery occlusion}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286038}, year = {2022}, abstract = {During ischemic stroke, infarct growth before recanalization diminishes functional outcome. Hence, adjunct treatment options to protect the ischemic penumbra before recanalization are eagerly awaited. In experimental stroke targeting two different pathways conferred protection from penumbral tissue loss: (1) enhancement of hypoxic tolerance of neurons by deletion of the calcium channel subunit Orai2 and (2) blocking of detrimental lymphocyte-platelet responses. However, until now, no preclinical stroke study has assessed the potential of combining neuroprotective with anti-thrombo-inflammatory interventions to augment therapeutic effects. We induced focal cerebral ischemia in Orai2-deficient (Orai2\(^{-/-}\)) mice by middle cerebral artery occlusion (MCAO). Animals were treated with anti-glycoprotein Ib alpha (GPIbα) Fab fragments (p0p/B Fab) blocking GPIbα-von Willebrand factor (vWF) interactions. Rat immunoglobulin G (IgG) Fab was used as the control treatment. The extent of infarct growth before recanalization was assessed at 4 h after MCAO. Moreover, infarct volumes were determined 6 h after recanalization (occlusion time: 4 h). Orai2 deficiency significantly halted cerebral infarct progression under occlusion. Inhibition of platelet GPIbα further reduced primary infarct growth in Orai2\(^{-/-}\) mice. During ischemia-reperfusion, upon recanalization, mice were likewise protected. All in all, we show that neuroprotection in Orai2\(^{-/-}\) mice can be augmented by targeting thrombo-inflammation. This supports the clinical development of combined neuroprotective/anti-platelet strategies in hyper-acute stroke.}, language = {en} } @article{AscheidBaumannFunkeetal.2023, author = {Ascheid, David and Baumann, Magdalena and Funke, Caroline and Volz, Julia and Pinnecker, J{\"u}rgen and Friedrich, Mike and H{\"o}hn, Marie and Nandigama, Rajender and Erg{\"u}n, S{\"u}leyman and Nieswandt, Bernhard and Heinze, Katrin G. and Henke, Erik}, title = {Image-based modeling of vascular organization to evaluate anti-angiogenic therapy}, series = {Biology Direct}, volume = {18}, journal = {Biology Direct}, doi = {10.1186/s13062-023-00365-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357242}, year = {2023}, abstract = {In tumor therapy anti-angiogenic approaches have the potential to increase the efficacy of a wide variety of subsequently or co-administered agents, possibly by improving or normalizing the defective tumor vasculature. Successful implementation of the concept of vascular normalization under anti-angiogenic therapy, however, mandates a detailed understanding of key characteristics and a respective scoring metric that defines an improved vasculature and thus a successful attempt. Here, we show that beyond commonly used parameters such as vessel patency and maturation, anti-angiogenic approaches largely benefit if the complex vascular network with its vessel interconnections is both qualitatively and quantitatively assessed. To gain such deeper insight the organization of vascular networks, we introduce a multi-parametric evaluation of high-resolution angiographic images based on light-sheet fluorescence microscopy images of tumors. We first could pinpoint key correlations between vessel length, straightness and diameter to describe the regular, functional and organized structure observed under physiological conditions. We found that vascular networks from experimental tumors diverted from those in healthy organs, demonstrating the dysfunctionality of the tumor vasculature not only on the level of the individual vessel but also in terms of inadequate organization into larger structures. These parameters proofed effective in scoring the degree of disorganization in different tumor entities, and more importantly in grading a potential reversal under treatment with therapeutic agents. The presented vascular network analysis will support vascular normalization assessment and future optimization of anti-angiogenic therapy.}, language = {en} } @article{ElgheznawyOefteringEnglertetal.2023, author = {Elgheznawy, Amro and {\"O}ftering, Patricia and Englert, Maximilian and Mott, Kristina and Kaiser, Friederike and Kusch, Charly and Gbureck, Uwe and B{\"o}sl, Michael R. and Schulze, Harald and Nieswandt, Bernhard and V{\"o}gtle, Timo and Hermanns, Heike M.}, title = {Loss of zinc transporters ZIP1 and ZIP3 augments platelet reactivity in response to thrombin and accelerates thrombus formation in vivo}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1197894}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320154}, year = {2023}, abstract = {Zinc (Zn2+) is considered as important mediator of immune cell function, thrombosis and haemostasis. However, our understanding of the transport mechanisms that regulate Zn2+ homeostasis in platelets is limited. Zn2+ transporters, ZIPs and ZnTs, are widely expressed in eukaryotic cells. Using mice globally lacking ZIP1 and ZIP3 (ZIP1/3 DKO), our aim was to explore the potential role of these Zn2+ transporters in maintaining platelet Zn2+ homeostasis and in the regulation of platelet function. While ICP-MS measurements indicated unaltered overall Zn2+ concentrations in platelets of ZIP1/3 DKO mice, we observed a significantly increased content of FluoZin3-stainable free Zn2+, which, however, appears to be released less efficiently upon thrombin-stimulated platelet activation. On the functional level, ZIP1/3 DKO platelets exhibited a hyperactive response towards threshold concentrations of G protein-coupled receptor (GPCR) agonists, while immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor agonist signalling was unaffected. This resulted in enhanced platelet aggregation towards thrombin, bigger thrombus volume under flow ex vivo and faster in vivo thrombus formation in ZIP1/3 DKO mice. Molecularly, augmented GPCR responses were accompanied by enhanced Ca2+ and PKC, CamKII and ERK1/2 signalling. The current study thereby identifies ZIP1 and ZIP3 as important regulators for the maintenance of platelet Zn2+ homeostasis and function.}, language = {en} } @article{NavarroStarkeHeemskerketal.2022, author = {Navarro, Stefano and Starke, Andreas and Heemskerk, Johan W. M. and Kuijpers, Marijke J. E. and Stegner, David and Nieswandt, Bernhard}, title = {Targeting of a conserved epitope in mouse and human GPVI differently affects receptor function}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {15}, issn = {1422-0067}, doi = {10.3390/ijms23158610}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286227}, year = {2022}, abstract = {Glycoprotein (GP) VI is the major platelet collagen receptor and a promising anti-thrombotic target. This was first demonstrated in mice using the rat monoclonal antibody JAQ1, which completely blocks the Collagen-Related Peptide (CRP)-binding site on mouse GPVI and efficiently inhibits mouse platelet adhesion, activation and aggregation on collagen. Here, we show for the first time that JAQ1 cross-reacts with human GPVI (huGPVI), but not with GPVI in other tested species, including rat, rabbit, guinea pig, swine, and dog. We further demonstrate that JAQ1 differently modulates mouse and human GPVI function. Similar to its effects on mouse GPVI (mGPVI), JAQ1 inhibits CRP-induced activation in human platelets, whereas, in stark contrast to mouse GPVI, it does not inhibit the adhesion, activation or aggregate formation of human platelets on collagen, but causes instead an increased response. This effect was also seen with platelets from newly generated human GPVI knockin mice (hGP6\(^{tg/tg\)). These results indicate that the binding of JAQ1 to a structurally conserved epitope in GPVI differently affects its function in human and mouse platelets.}, language = {en} } @article{VieraElMerahbiNieswandtetal.2016, author = {Viera, Jonathan Trujillo and El-Merahbi, Rabih and Nieswandt, Bernhard and Stegner, David and Sumara, Grzegorz}, title = {Phospholipases D1 and D2 Suppress Appetite and Protect against Overweight}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0157607}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179729}, year = {2016}, abstract = {Obesity is a major risk factor predisposing to the development of peripheral insulin resistance and type 2 diabetes (T2D). Elevated food intake and/or decreased energy expenditure promotes body weight gain and acquisition of adipose tissue. Number of studies implicated phospholipase D (PLD) enzymes and their product, phosphatidic acid (PA), in regulation of signaling cascades controlling energy intake, energy dissipation and metabolic homeostasis. However, the impact of PLD enzymes on regulation of metabolism has not been directly determined so far. In this study we utilized mice deficient for two major PLD isoforms, PLD1 and PLD2, to assess the impact of these enzymes on regulation of metabolic homeostasis. We showed that mice lacking PLD1 or PLD2 consume more food than corresponding control animals. Moreover, mice deficient for PLD2, but not PLD1, present reduced energy expenditure. In addition, deletion of either of the PLD enzymes resulted in development of elevated body weight and increased adipose tissue content in aged animals. Consistent with the fact that elevated content of adipose tissue predisposes to the development of hyperlipidemia and insulin resistance, characteristic for the pre-diabetic state, we observed that Pld1\(^{-/-}\) and Pld2\(^{-/-}\) mice present elevated free fatty acids (FFA) levels and are insulin as well as glucose intolerant. In conclusion, our data suggest that deficiency of PLD1 or PLD2 activity promotes development of overweight and diabetes.}, language = {en} }