@article{ZahoGhirlandoAlfonsoetal.2015, author = {Zaho, Huaying and Ghirlando, Rodolfo and Alfonso, Carlos and Arisaka, Fumio and Attali, Ilan and Bain, David L. and Bakhtina, Marina M. and Becker, Donald F. and Bedwell, Gregory J. and Bekdemir, Ahmet and Besong, Tabot M. D. and Birck, Catherine and Brautigam, Chad A. and Brennerman, William and Byron, Olwyn and Bzowska, Agnieszka and Chaires, Jonathan B. and Chaton, Catherine T. and Coelfen, Helmbut and Connaghan, Keith D. and Crowley, Kimberly A. and Curth, Ute and Daviter, Tina and Dean, William L. and Diez, Ana I. and Ebel, Christine and Eckert, Debra M. and Eisele, Leslie E. and Eisenstein, Edward and England, Patrick and Escalante, Carlos and Fagan, Jeffrey A. and Fairman, Robert and Finn, Ron M. and Fischle, Wolfgang and Garcia de la Torre, Jose and Gor, Jayesh and Gustafsson, Henning and Hall, Damien and Harding, Stephen E. and Hernandez Cifre, Jose G. and Herr, Andrew B. and Howell, Elizabeth E. and Isaac, Richard S. and Jao, Shu-Chuan and Jose, Davis and Kim, Soon-Jong and Kokona, Bashkim and Kornblatt, Jack A. and Kosek, Dalibor and Krayukhina, Elena and Krzizike, Daniel and Kusznir, Eric A. and Kwon, Hyewon and Larson, Adam and Laue, Thomas M. and Le Roy, Aline and Leech, Andrew P. and Lilie, Hauke and Luger, Karolin and Luque-Ortega, Juan R. and Ma, Jia and May, Carrie A. and Maynard, Ernest L. and Modrak-Wojcik, Anna and Mok, Yee-Foong and M{\"u}cke, Norbert and Nagel-Steger, Luitgard and Narlikar, Geeta J. and Noda, Masanori and Nourse, Amanda and Obsil, Thomas and Park, Chad K and Park, Jin-Ku and Pawelek, Peter D. and Perdue, Erby E. and Perkins, Stephen J. and Perugini, Matthew A. and Peterson, Craig L. and Peverelli, Martin G. and Piszczek, Grzegorz and Prag, Gali and Prevelige, Peter E. and Raynal, Bertrand D. E. and Rezabkova, Lenka and Richter, Klaus and Ringel, Alison E. and Rosenberg, Rose and Rowe, Arthur J. and Rufer, Arne C. and Scott, David J. and Seravalli, Javier G. and Solovyova, Alexandra S. and Song, Renjie and Staunton, David and Stoddard, Caitlin and Stott, Katherine and Strauss, Holder M. and Streicher, Werner W. and Sumida, John P. and Swygert, Sarah G. and Szczepanowski, Roman H. and Tessmer, Ingrid and Toth, Ronald T. and Tripathy, Ashutosh and Uchiyama, Susumu and Uebel, Stephan F. W. and Unzai, Satoru and Gruber, Anna Vitlin and von Hippel, Peter H. and Wandrey, Christine and Wang, Szu-Huan and Weitzel, Steven E and Wielgus-Kutrowska, Beata and Wolberger, Cynthia and Wolff, Martin and Wright, Edward and Wu, Yu-Sung and Wubben, Jacinta M. and Schuck, Peter}, title = {A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0126420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151903}, pages = {e0126420}, year = {2015}, abstract = {Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304\(\pm\)0.188) S (4.4\%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of \(\pm\)0.030 S (0.7\%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.}, language = {en} } @article{SchravenPlontkeSyhaetal.2011, author = {Schraven, Sebastian P. and Plontke, Stefan K. and Syha, Roland and Fend, Falko and Wolburg, Hartwig and Adam, Patrick}, title = {Dendritic cell tumor in a salivary gland lymph node: a rare differential diagnosis of salivary gland neoplasms}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69190}, year = {2011}, abstract = {Dendritic cell tumors are extremely rare neoplasms arising from antigen-presenting cells of the immune system. We report a case of a 69-year-old man with an unremarkable medical history who presented with a 2-months history of a gradually enlarging painless, firm, mobile, 2 × 2-cm swelling at the caudal pole of the left parotid gland without systemic symptoms. Histologically, the tumor consisted of a spindle cell proliferation in an intraparotideal lymph node. Based on the histopathologic, immunohistochemical and electron microscopic findings, a dendritic cell tumor, not otherwise specified (NOS) in an intraparotideal lymph node was diagnosed. The patient underwent complete tumor resection, and is currently free of disease, 2 years after surgery. These extremely rare tumors must be distinguished from other more common tumors in the salivary glands. Awareness that dendritic cell tumors may occur in this localization, careful histologic evaluation and ancillary immunohistochemical and electron microscopical analyses should allow for recognition of this entity. Virtual Slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1614859498581601.}, subject = {Medizin}, language = {en} } @article{CouchWangMcGuffogetal.2013, author = {Couch, Fergus J. and Wang, Xianshu and McGuffog, Lesley and Lee, Andrew and Olswold, Curtis and Kuchenbaecker, Karoline B. and Soucy, Penny and Fredericksen, Zachary and Barrowdale, Daniel and Dennis, Joe and Gaudet, Mia M. and Dicks, Ed and Kosel, Matthew and Healey, Sue and Sinilnikova, Olga M. and Lee, Adam and Bacot, Fran{\c{c}}ios and Vincent, Daniel and Hogervorst, Frans B. L. and Peock, Susan and Stoppa-Lyonnet, Dominique and Jakubowska, Anna and Radice, Paolo and Schmutzler, Rita Katharina and Domchek, Susan M. and Piedmonte, Marion and Singer, Christian F. and Friedman, Eitan and Thomassen, Mads and Hansen, Thomas V. O. and Neuhausen, Susan L. and Szabo, Csilla I. and Blanco, Ingnacio and Greene, Mark H. and Karlan, Beth Y. and Garber, Judy and Phelan, Catherine M. and Weitzel, Jeffrey N. and Montagna, Marco and Olah, Edith and Andrulis, Irene L. and Godwin, Andrew K. and Yannoukakos, Drakoulis and Goldgar, David E. and Caldes, Trinidad and Nevanlinna, Heli and Osorio, Ana and Terry, Mary Beth and Daly, Mary B. and van Rensburg, Elisabeth J. and Hamann, Ute and Ramus, Susan J. and Toland, Amanda Ewart and Caligo, Maria A. and Olopade, Olufunmilayo I. and Tung, Nadine and Claes, Kathleen and Beattie, Mary S. and Southey, Melissa C. and Imyanitov, Evgeny N. and Tischkowitz, Marc and Janavicius, Ramunas and John, Esther M. and Kwong, Ava and Diez, Orland and Kwong, Ava and Balma{\~n}a, Judith and Barkardottir, Rosa B. and Arun, Banu K. and Rennert, Gad and Teo, Soo-Hwang and Ganz, Patricia A. and Campbell, Ian and van der Hout, Annemarie H. and van Deurzen, Carolien H. M. and Seynaeve, Caroline and Garcia, Encarna B. G{\´o}mez and van Leeuwen, Flora E. and Meijers-Heijboer, Hanne E. J. and Gille, Johannes J. P. and Ausems, Magreet G. E. M. and Blok, Marinus J. and Ligtenberg, Marjolinjin J. L. and Rookus, Matti A. and Devilee, Peter and Verhoef, Senno and van Os, Theo A. M. and Wijnen, Juul T. and Frost, Debra and Ellis, Steve and Fineberg, Elena and Platte, Radke and Evans, D. Gareth and Izatt, Luise and Eeles, Rosalind A. and Adlard, Julian and Eccles, Diana M. and Cook, Jackie and Brewer, Carole and Douglas, Fiona and Hodgson, Shirley and Morrison, Patrick J. and Side, Lucy E. and Donaldson, Alan and Houghton, Catherine and Rogers, Mark T. and Dorkins, Huw and Eason, Jacqueline and Gregory, Helen and McCann, Emma and Murray, Alex and Calender, Alain and Hardouin, Agn{\`e}s and Berthet, Pascaline and Delnatte, Capucine and Nogues, Catherine and Lasset, Christine and Houdayer, Claude and Leroux,, Dominique and Rouleau, Etienne and Prieur, Fabienne and Damiola, Francesca and Sobol, Hagay and Coupier, Isabelle and Venat-Bouvet, Laurence and Castera, Laurent and Gauthier-Villars, Marion and L{\´e}on{\´e}, M{\´e}lanie and Pujol, Pascal and Mazoyer, Sylvie and Bignon, Yves-Jean and Zlowocka-Perlowska, Elzbieta and Gronwald, Jacek and Lubinski,, Jan and Durda, Katarzyna and Jaworska, Katarzyna and Huzarski, Tomasz and Spurdle, Amanda B. and Viel, Alessandra and Peissel, Bernhard and Bonanni, Bernardo and Melloni, Guilia and Ottini, Laura and Papi, Laura and Varesco, Liliana and Tibiletti, Maria Grazia and Peterlongo, Paolo and Volorio, Sara and Manoukian, Siranoush and Pensotti, Valeria and Arnold, Norbert and Engel, Christoph and Deissler, Helmut and Gadzicki, Dorothea and Gehrig, Andrea and Kast, Karin and Rhiem, Kerstin and Meindl, Alfons and Niederacher, Dieter and Ditsch, Nina and Plendl, Hansjoerg and Preisler-Adams, Sabine and Engert, Stefanie and Sutter, Christian and Varon-Mateeva, Raymenda and Wappenschmidt, Barbara and Weber, Bernhard H. F. and Arver, Brita and Stenmark-Askmalm, Marie and Loman, Niklas and Rosenquist, Richard and Einbeigi, Zakaria and Nathanson, Katherine L. and Rebbeck, Timothy R. and Blank, Stephanie V. and Cohn, David E. and Rodriguez, Gustavo C. and Small, Laurie and Friedlander, Michael and Bae-Jump, Victoria L. and Fink-Retter, Anneliese and Rappaport, Christine and Gschwantler-Kaulich, Daphne and Pfeiler, Georg and Tea, Muy-Kheng and Lindor, Noralane M. and Kaufman, Bella and Paluch, Shani Shimon and Laitman, Yael and Skytte, Anne-Bine and Gerdes, Anne-Marie and Pedersen, Inge Sokilde and Moeller, Sanne Traasdahl and Kruse, Torben A. and Jensen, Uffe Birk and Vijai, Joseph and Sarrel, Kara and Robson, Mark and Kauff, Noah and Mulligan, Anna Marie and Glendon, Gord and Ozcelik, Hilmi and Ejlertsen, Bent and Nielsen, Finn C. and J{\o}nson, Lars and Andersen, Mette K. and Ding, Yuan Chun and Steele, Linda and Foretova, Lenka and Teul{\´e}, Alex and Lazaro, Conxi and Brunet, Joan and Pujana, Miquel Angel and Mai, Phuong L. and Loud, Jennifer T. and Walsh, Christine and Lester, Jenny and Orsulic, Sandra and Narod, Steven A. and Herzog, Josef and Sand, Sharon R. and Tognazzo, Silvia and Agata, Simona and Vaszko, Tibor and Weaver, Joellen and Stravropoulou, Alexandra V. and Buys, Saundra S. and Romero, Atocha and de la Hoya, Miguel and Aittom{\"a}ki, Kristiina and Muranen, Taru A. and Duran, Mercedes and Chung, Wendy K. and Lasa, Adriana and Dorfling, Cecilia M. and Miron, Alexander and Benitez, Javier and Senter, Leigha and Huo, Dezheng and Chan, Salina B. and Sokolenko, Anna P. and Chiquette, Jocelyne and Tihomirova, Laima and Friebel, Tara M. and Agnarsson, Bjarne A. and Lu, Karen H. and Lejbkowicz, Flavio and James, Paul A. and Hall, Per and Dunning, Alison M. and Tessier, Daniel and Cunningham, Julie and Slager, Susan L. and Chen, Wang and Hart, Steven and Stevens, Kristen and Simard, Jacques and Pastinen, Tomi and Pankratz, Vernon S. and Offit, Kenneth and Easton, Douglas F. and Chenevix-Trench, Georgia and Antoniou, Antonis C.}, title = {Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk}, series = {PLOS Genetics}, volume = {9}, journal = {PLOS Genetics}, number = {3}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127947}, pages = {e1003212}, year = {2013}, abstract = {BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 x 10(-8), HR = 1.14, 95\% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 x 10(-8), HR = 1.27, 95\% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 x 10(-8), HR = 1.20, 95\% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2 x 10(-4)). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5\% of BRCA1 carriers at lowest risk are 28\%-50\% compared to 81\%-100\% for the 5\% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5\% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28\% or lower, whereas the 5\% at highest risk will have a risk of 63\% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.}, language = {en} } @article{DePalmaAbrahamczykAizenetal.2016, author = {De Palma, Adriana and Abrahamczyk, Stefan and Aizen, Marcelo A. and Albrecht, Matthias and Basset, Yves and Bates, Adam and Blake, Robin J. and Boutin, C{\´e}line and Bugter, Rob and Connop, Stuart and Cruz-L{\´o}pez, Leopoldo and Cunningham, Saul A. and Darvill, Ben and Diek{\"o}tter, Tim and Dorn, Silvia and Downing, Nicola and Entling, Martin H. and Farwig, Nina and Felicioli, Antonio and Fonte, Steven J. and Fowler, Robert and Franzen, Markus Franz{\´e}n and Goulson, Dave and Grass, Ingo and Hanley, Mick E. and Hendrix, Stephen D. and Herrmann, Farina and Herzog, Felix and Holzschuh, Andrea and Jauker, Birgit and Kessler, Michael and Knight, M. E. and Kruess, Andreas and Lavelle, Patrick and Le F{\´e}on, Violette and Lentini, Pia and Malone, Louise A. and Marshall, Jon and Mart{\´i}nez Pach{\´o}n, Eliana and McFrederick, Quinn S. and Morales, Carolina L. and Mudri-Stojnic, Sonja and Nates-Parra, Guiomar and Nilsson, Sven G. and {\"O}ckinger, Erik and Osgathorpe, Lynne and Parra-H, Alejandro and Peres, Carlos A. and Persson, Anna S. and Petanidou, Theodora and Poveda, Katja and Power, Eileen F. and Quaranta, Marino and Quintero, Carolina and Rader, Romina and Richards, Miriam H. and Roulston, T'ai and Rousseau, Laurent and Sadler, Jonathan P. and Samneg{\aa}rd, Ulrika and Schellhorn, Nancy A. and Sch{\"u}epp, Christof and Schweiger, Oliver and Smith-Pardo, Allan H. and Steffan-Dewenter, Ingolf and Stout, Jane C. and Tonietto, Rebecca K. and Tscharntke, Teja and Tylianakis, Jason M. and Verboven, Hans A. F. and Vergara, Carlos H. and Verhulst, Jort and Westphal, Catrin and Yoon, Hyung Joo and Purvis, Andy}, title = {Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep31153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167642}, pages = {31153}, year = {2016}, abstract = {Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.}, language = {en} } @article{HerrmannAdamNotzetal.2020, author = {Herrmann, Johannes and Adam, Elisabeth Hannah and Notz, Quirin and Helmer, Philipp and Sonntagbauer, Michael and Ungemach-Papenberg, Peter and Sanns, Andreas and Zausig, York and Steinfeldt, Thorsten and Torje, Iuliu and Schmid, Benedikt and Schlesinger, Tobias and Rolfes, Caroline and Reyher, Christian and Kredel, Markus and Stumpner, Jan and Brack, Alexander and Wurmb, Thomas and Gill-Schuster, Daniel and Kranke, Peter and Weismann, Dirk and Klinker, Hartwig and Heuschmann, Peter and R{\"u}cker, Viktoria and Frantz, Stefan and Ertl, Georg and Muellenbach, Ralf Michael and Mutlak, Haitham and Meybohm, Patrick and Zacharowski, Kai and Lotz, Christopher}, title = {COVID-19 Induced Acute Respiratory Distress Syndrome — A Multicenter Observational Study}, series = {Frontiers in Medicine}, volume = {7}, journal = {Frontiers in Medicine}, issn = {2296-858X}, doi = {10.3389/fmed.2020.599533}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219834}, year = {2020}, abstract = {Background: Proportions of patients dying from the coronavirus disease-19 (COVID-19) vary between different countries. We report the characteristics; clinical course and outcome of patients requiring intensive care due to COVID-19 induced acute respiratory distress syndrome (ARDS). Methods: This is a retrospective, observational multicentre study in five German secondary or tertiary care hospitals. All patients consecutively admitted to the intensive care unit (ICU) in any of the participating hospitals between March 12 and May 4, 2020 with a COVID-19 induced ARDS were included. Results: A total of 106 ICU patients were treated for COVID-19 induced ARDS, whereas severe ARDS was present in the majority of cases. Survival of ICU treatment was 65.0\%. Median duration of ICU treatment was 11 days; median duration of mechanical ventilation was 9 days. The majority of ICU treated patients (75.5\%) did not receive any antiviral or anti-inflammatory therapies. Venovenous (vv) ECMO was utilized in 16.3\%. ICU triage with population-level decision making was not necessary at any time. Univariate analysis associated older age, diabetes mellitus or a higher SOFA score on admission with non-survival during ICU stay. Conclusions: A high level of care adhering to standard ARDS treatments lead to a good outcome in critically ill COVID-19 patients.}, language = {en} }