@article{HohnmannMillesSchinkeetal.2014, author = {Hohnmann, Christopher and Milles, Bianca and Schinke, Michael and Schroeter, Michael and Ulzheimer, Jochen and Kraft, Peter and Kleinschnitz, Christoph and Lehmann, Paul V. and Kuerten, Stefanie}, title = {Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood}, series = {Acta Neuropathologica Communications}, volume = {2}, journal = {Acta Neuropathologica Communications}, number = {138}, doi = {10.1186/s40478-014-0138-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126124}, year = {2014}, abstract = {Introduction B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). Results Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5\%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40\%) with a pattern II and three of 14 patients (21.4\%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95\% confidence interval 1.87-19.77). Conclusions Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients.}, language = {en} } @article{HohmannMillesSchinkeetal.2014, author = {Hohmann, Christopher and Milles, Bianca and Schinke, Michael and Schroeter, Michael and Ulzheimer, Jochen and Kraft, Peter and Kleinschnitz, Christoph and Lehmann, Paul V. and Kuerten, Stefanie}, title = {Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood}, series = {Acta Neuropathologica Communications}, volume = {2}, journal = {Acta Neuropathologica Communications}, number = {138}, issn = {2051-5960}, doi = {10.1186/s40478-014-0138-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120580}, year = {2014}, abstract = {INTRODUCTION: B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). RESULTS: Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5\%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40\%) with a pattern II and three of 14 patients (21.4\%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95\% confidence interval 1.87-19.77). CONCLUSIONS: Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients.}, language = {en} } @article{KarulinKaracsonyZhangetal.2015, author = {Karulin, Alexey Y. and Karacsony, Kinga and Zhang, Wenji and Targoni, Oleg S. and Moldova, Ioana and Dittrich, Marcus and Sundararaman, Srividya and Lehmann, Paul V.}, title = {ELISPOTs produced by CD8 and CD4 cells follow Log Normal size distribution permitting objective counting}, series = {Cells}, volume = {4}, journal = {Cells}, number = {1}, doi = {10.3390/cells4010056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149648}, pages = {56-70}, year = {2015}, abstract = {Each positive well in ELISPOT assays contains spots of variable sizes that can range from tens of micrometers up to a millimeter in diameter. Therefore, when it comes to counting these spots the decision on setting the lower and the upper spot size thresholds to discriminate between non-specific background noise, spots produced by individual T cells, and spots formed by T cell clusters is critical. If the spot sizes follow a known statistical distribution, precise predictions on minimal and maximal spot sizes, belonging to a given T cell population, can be made. We studied the size distributional properties of IFN-γ, IL-2, IL-4, IL-5 and IL-17 spots elicited in ELISPOT assays with PBMC from 172 healthy donors, upon stimulation with 32 individual viral peptides representing defined HLA Class I-restricted epitopes for CD8 cells, and with protein antigens of CMV and EBV activating CD4 cells. A total of 334 CD8 and 80 CD4 positive T cell responses were analyzed. In 99.7\% of the test cases, spot size distributions followed Log Normal function. These data formally demonstrate that it is possible to establish objective, statistically validated parameters for counting T cell ELISPOTs.}, language = {en} } @article{KarulinCaspellDittrichetal.2015, author = {Karulin, Alexey Y. and Caspell, Richard and Dittrich, Marcus and Lehmann, Paul V.}, title = {Normal distribution of CD8+ T-cell-derived ELISPOT counts within replicates justifies the reliance on parametric statistics for identifying positive responses}, series = {Cells}, volume = {4}, journal = {Cells}, number = {1}, doi = {10.3390/cells4010096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149968}, pages = {96-111}, year = {2015}, abstract = {Accurate assessment of positive ELISPOT responses for low frequencies of antigen-specific T-cells is controversial. In particular, it is still unknown whether ELISPOT counts within replicate wells follow a theoretical distribution function, and thus whether high power parametric statistics can be used to discriminate between positive and negative wells. We studied experimental distributions of spot counts for up to 120 replicate wells of IFN-γ production by CD8+ T-cell responding to EBV LMP2A (426 - 434) peptide in human PBMC. The cells were tested in serial dilutions covering a wide range of average spot counts per condition, from just a few to hundreds of spots per well. Statistical analysis of the data using diagnostic Q-Q plots and the Shapiro-Wilk normality test showed that in the entire dynamic range of ELISPOT spot counts within replicate wells followed a normal distribution. This result implies that the Student t-Test and ANOVA are suited to identify positive responses. We also show experimentally that borderline responses can be reliably detected by involving more replicate wells, plating higher numbers of PBMC, addition of IL-7, or a combination of these. Furthermore, we have experimentally verified that the number of replicates needed for detection of weak responses can be calculated using parametric statistics.}, language = {en} } @article{WunschCaspellKuertenetal.2015, author = {Wunsch, Marie and Caspell, Richard and Kuerten, Stefanie and Lehmann, Paul V. and Sundararaman, Srividya}, title = {Serial measurements of apoptotic cell numbers provide better acceptance criterion for PBMC quality than a single measurement prior to the T cell assay}, series = {Cells}, volume = {4}, journal = {Cells}, number = {1}, doi = {10.3390/cells4010040}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150213}, pages = {40-55}, year = {2015}, abstract = {As soon as Peripheral Blood Mononuclear Cells (PBMC) are isolated from whole blood, some cells begin dying. The rate of apoptotic cell death is increased when PBMC are shipped, cryopreserved, or stored under suboptimal conditions. Apoptotic cells secrete cytokines that suppress inflammation while promoting phagocytosis. Increased numbers of apoptotic cells in PBMC may modulate T cell functions in antigen-triggered T cell assays. We assessed the effect of apoptotic bystander cells on a T cell ELISPOT assay by selectively inducing B cell apoptosis using α-CD20 mAbs. The presence of large numbers of apoptotic B cells did not affect T cell functionality. In contrast, when PBMC were stored under unfavorable conditions, leading to damage and apoptosis in the T cells as well as bystander cells, T cell functionality was greatly impaired. We observed that measuring the number of apoptotic cells before plating the PBMC into an ELISPOT assay did not reflect the extent of PBMC injury, but measuring apoptotic cell frequencies at the end of the assay did. Our data suggest that measuring the numbers of apoptotic cells prior to and post T cell assays may provide more stringent PBMC quality acceptance criteria than measurements done only prior to the start of the assay.}, language = {en} } @article{WunschHohmannMillesetal.2016, author = {Wunsch, Marie and Hohmann, Christopher and Milles, Bianca and Rostermund, Christina and Lehmann, Paul V. and Schroeter, Michael and Bayas, Antonios and Ulzheimer, Jochen and M{\"a}urer, Mathias and Erg{\"u}n, S{\"u}leyman and Kuerten, Stefanie}, title = {The Correlation between the Virus- and Brain Antigen-Specific B Cell Response in the Blood of Patients with Multiple Sclerosis}, series = {Viruses}, volume = {8}, journal = {Viruses}, number = {4}, doi = {10.3390/v8040105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146946}, pages = {105}, year = {2016}, abstract = {There is a largely divergent body of literature regarding the relationship between Epstein-Barr virus (EBV) infection and brain inflammation in multiple sclerosis (MS). Here, we tested MS patients during relapse (n = 11) and in remission (n = 19) in addition to n = 22 healthy controls to study the correlation between the EBV- and brain-specific B cell response in the blood by enzyme-linked immunospot (ELISPOT) and enzyme-linked immunosorbent assay (ELISA). Cytomegalovirus (CMV) was used as a control antigen tested in n = 16 MS patients during relapse and in n = 35 patients in remission. Over the course of the study, n = 16 patients were untreated, while n = 33 patients received immunomodulatory therapy. The data show that there was a moderate correlation between the frequencies of EBV- and brain-reactive B cells in MS patients in remission. In addition we could detect a correlation between the B cell response to EBV and disease activity. There was no evidence of an EBV reactivation. Interestingly, there was also a correlation between the frequencies of CMV- and brain-specific B cells in MS patients experiencing an acute relapse and an elevated B cell response to CMV was associated with higher disease activity. The trend remained when excluding seronegative subjects but was non-significant. These data underline that viral infections might impact the immunopathology of MS, but the exact link between the two entities remains subject of controversy.}, language = {en} }