@article{AlbersBernsteinBrachmannetal.2016, author = {Albers, Gregory W. and Bernstein, Richard A. and Brachmann, Johannes and Camm, John and Easton, J. Donald and Fromm, Peter and Goto, Shinya and Granger, Christopher B. and Hohnloser, Stefan H. and Hylek, Elaine and Jaffer, Amir K. and Krieger, Derk W. and Passman, Rod and Pines, Jesse M. and Reed, Shelby D. and Rothwell, Peter M. and Kowey, Peter R.}, title = {Heart Rhythm Monitoring Strategies for Cryptogenic Stroke: 2015 Diagnostics and Monitoring Stroke Focus Group Report}, series = {Journal of the American Heart Association}, volume = {5}, journal = {Journal of the American Heart Association}, number = {e00294}, doi = {10.1161/JAHA.115.002944}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165709}, pages = {1-11}, year = {2016}, abstract = {No abstract available.}, language = {en} } @article{KarimiFreundWageretal.2021, author = {Karimi, Sohail M. and Freund, Matthias and Wager, Brittney M. and Knoblauch, Michael and Fromm, J{\"o}rg and M. Mueller, Heike and Ache, Peter and Krischke, Markus and Mueller, Martin J. and M{\"u}ller, Tobias and Dittrich, Marcus and Geilfus, Christoph-Martin and Alfaran, Ahmed H. and Hedrich, Rainer and Deeken, Rosalia}, title = {Under salt stress guard cells rewire ion transport and abscisic acid signaling}, series = {New Phytologist}, volume = {231}, journal = {New Phytologist}, number = {3}, doi = {10.1111/nph.17376}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259635}, pages = {1040-1055}, year = {2021}, abstract = {Soil salinity is an increasingly global problem which hampers plant growth and crop yield. Plant productivity depends on optimal water-use efficiency and photosynthetic capacity balanced by stomatal conductance. Whether and how stomatal behavior contributes to salt sensitivity or tolerance is currently unknown. This work identifies guard cell-specific signaling networks exerted by a salt-sensitive and salt-tolerant plant under ionic and osmotic stress conditions accompanied by increasing NaCl loads. We challenged soil-grown Arabidopsis thaliana and Thellungiella salsuginea plants with short- and long-term salinity stress and monitored genome-wide gene expression and signals of guard cells that determine their function. Arabidopsis plants suffered from both salt regimes and showed reduced stomatal conductance while Thellungiella displayed no obvious stress symptoms. The salt-dependent gene expression changes of guard cells supported the ability of the halophyte to maintain high potassium to sodium ratios and to attenuate the abscisic acid (ABA) signaling pathway which the glycophyte kept activated despite fading ABA concentrations. Our study shows that salinity stress and even the different tolerances are manifested on a single cell level. Halophytic guard cells are less sensitive than glycophytic guard cells, providing opportunities to manipulate stomatal behavior and improve plant productivity.}, language = {en} } @article{JohnsonAkiyamaBlackburnetal.2023, author = {Johnson, Michael D. and Akiyama, Kazunori and Blackburn, Lindy and Bouman, Katherine L. and Broderick, Avery E. and Cardoso, Vitor and Fender, Rob P. and Fromm, Christian M. and Galison, Peter and G{\´o}mez, Jos{\´e} L. and Haggard, Daryl and Lister, Matthew L. and Lobanov, Andrei P. and Markoff, Sera and Narayan, Ramesh and Natarajan, Priyamvada and Nichols, Tiffany and Pesce, Dominic W. and Younsi, Ziri and Chael, Andrew and Chatterjee, Koushik and Chaves, Ryan and Doboszewski, Juliusz and Dodson, Richard and Doeleman, Sheperd S. and Elder, Jamee and Fitzpatrick, Garret and Haworth, Kari and Houston, Janice and Issaoun, Sara and Kovalev, Yuri Y. and Levis, Aviad and Lico, Rocco and Marcoci, Alexandru and Martens, Niels C. M. and Nagar, Neil M. and Oppenheimer, Aaron and Palumbo, Daniel C. M. and Ricarte, Angelo and Rioja, Mar{\´i}a  J. and Roelofs, Freek and Thresher, Ann C. and Tiede, Paul and Weintroub, Jonathan and Wielgus, Maciek}, title = {Key science goals for the next-generation Event Horizon Telescope}, series = {Galaxies}, volume = {11}, journal = {Galaxies}, number = {3}, issn = {2075-4434}, doi = {10.3390/galaxies11030061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313525}, year = {2023}, abstract = {The Event Horizon Telescope (EHT) has led to the first images of a supermassive black hole, revealing the central compact objects in the elliptical galaxy M87 and the Milky Way. Proposed upgrades to this array through the next-generation EHT (ngEHT) program would sharply improve the angular resolution, dynamic range, and temporal coverage of the existing EHT observations. These improvements will uniquely enable a wealth of transformative new discoveries related to black hole science, extending from event-horizon-scale studies of strong gravity to studies of explosive transients to the cosmological growth and influence of supermassive black holes. Here, we present the key science goals for the ngEHT and their associated instrument requirements, both of which have been formulated through a multi-year international effort involving hundreds of scientists worldwide.}, language = {en} }