@article{AndelovicWinterJakobetal.2021, author = {Andelovic, Kristina and Winter, Patrick and Jakob, Peter Michael and Bauer, Wolfgang Rudolf and Herold, Volker and Zernecke, Alma}, title = {Evaluation of plaque characteristics and inflammation using magnetic resonance imaging}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {2}, issn = {2227-9059}, doi = {10.3390/biomedicines9020185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228839}, year = {2021}, abstract = {Atherosclerosis is an inflammatory disease of large and medium-sized arteries, characterized by the growth of atherosclerotic lesions (plaques). These plaques often develop at inner curvatures of arteries, branchpoints, and bifurcations, where the endothelial wall shear stress is low and oscillatory. In conjunction with other processes such as lipid deposition, biomechanical factors lead to local vascular inflammation and plaque growth. There is also evidence that low and oscillatory shear stress contribute to arterial remodeling, entailing a loss in arterial elasticity and, therefore, an increased pulse-wave velocity. Although altered shear stress profiles, elasticity and inflammation are closely intertwined and critical for plaque growth, preclinical and clinical investigations for atherosclerosis mostly focus on the investigation of one of these parameters only due to the experimental limitations. However, cardiovascular magnetic resonance imaging (MRI) has been demonstrated to be a potent tool which can be used to provide insights into a large range of biological parameters in one experimental session. It enables the evaluation of the dynamic process of atherosclerotic lesion formation without the need for harmful radiation. Flow-sensitive MRI provides the assessment of hemodynamic parameters such as wall shear stress and pulse wave velocity which may replace invasive and radiation-based techniques for imaging of the vascular function and the characterization of early plaque development. In combination with inflammation imaging, the analyses and correlations of these parameters could not only significantly advance basic preclinical investigations of atherosclerotic lesion formation and progression, but also the diagnostic clinical evaluation for early identification of high-risk plaques, which are prone to rupture. In this review, we summarize the key applications of magnetic resonance imaging for the evaluation of plaque characteristics through flow sensitive and morphological measurements. The simultaneous measurements of functional and structural parameters will further preclinical research on atherosclerosis and has the potential to fundamentally improve the detection of inflammation and vulnerable plaques in patients.}, language = {en} } @article{AndelovicWinterKampfetal.2021, author = {Andelovic, Kristina and Winter, Patrick and Kampf, Thomas and Xu, Anton and Jakob, Peter Michael and Herold, Volker and Bauer, Wolfgang Rudolf and Zernecke, Alma}, title = {2D Projection Maps of WSS and OSI Reveal Distinct Spatiotemporal Changes in Hemodynamics in the Murine Aorta during Ageing and Atherosclerosis}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {12}, issn = {2227-9059}, doi = {10.3390/biomedicines9121856}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252164}, year = {2021}, abstract = {Growth, ageing and atherosclerotic plaque development alter the biomechanical forces acting on the vessel wall. However, monitoring the detailed local changes in wall shear stress (WSS) at distinct sites of the murine aortic arch over time has been challenging. Here, we studied the temporal and spatial changes in flow, WSS, oscillatory shear index (OSI) and elastic properties of healthy wildtype (WT, n = 5) and atherosclerotic apolipoprotein E-deficient (Apoe\(^{-/-}\), n = 6) mice during ageing and atherosclerosis using high-resolution 4D flow magnetic resonance imaging (MRI). Spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated, allowing the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and local correlations between WSS, pulse wave velocity (PWV), plaque and vessel wall characteristics. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe\(^{-/-}\) mice, and we identified the circumferential WSS as potential marker of plaque size and composition in advanced atherosclerosis and the radial strain as a potential marker for vascular elasticity. Two-dimensional (2D) projection maps of WSS and OSI, including statistical analysis provide a powerful tool to monitor local aortic hemodynamics during ageing and atherosclerosis. The correlation of spatially resolved hemodynamics and plaque characteristics could significantly improve our understanding of the impact of hemodynamics on atherosclerosis, which may be key to understand plaque progression towards vulnerability.}, language = {en} } @article{BillerCholiBlaimeretal.2014, author = {Biller, Armin and Choli, Morwan and Blaimer, Martin and Breuer, Felix A. and Jakob, Peter M. and Bartsch, Andreas J.}, title = {Combined Acquisition Technique (CAT) for Neuroimaging of Multiple Sclerosis at Low Specific Absorption Rates (SAR)}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {3}, issn = {1932-6203}, doi = {10.1371/journal.pone.0091030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117179}, pages = {e91030}, year = {2014}, abstract = {Purpose: To compare a novel combined acquisition technique (CAT) of turbo-spin-echo (TSE) and echo-planar-imaging (EPI) with conventional TSE. CAT reduces the electromagnetic energy load transmitted for spin excitation. This radiofrequency (RF) burden is limited by the specific absorption rate (SAR) for patient safety. SAR limits restrict high-field MRI applications, in particular. Material and Methods: The study was approved by the local Medical Ethics Committee. Written informed consent was obtained from all participants. T2- and PD-weighted brain images of n = 40 Multiple Sclerosis (MS) patients were acquired by CAT and TSE at 3 Tesla. Lesions were recorded by two blinded, board-certificated neuroradiologists. Diagnostic equivalence of CAT and TSE to detect MS lesions was evaluated along with their SAR, sound pressure level (SPL) and sensations of acoustic noise, heating, vibration and peripheral nerve stimulation. Results: Every MS lesion revealed on TSE was detected by CAT according to both raters (Cohen's kappa of within-rater/across-CAT/TSE lesion detection kappa(CAT) = 1.00, at an inter-rater lesion detection agreement of kappa(LES) = 0.82). CAT reduced the SAR burden significantly compared to TSE (p<0.001). Mean SAR differences between TSE and CAT were 29.0 (+/- 5.7) \% for the T2-contrast and 32.7 (+/- 21.9) \% for the PD-contrast (expressed as percentages of the effective SAR limit of 3.2 W/kg for head examinations). Average SPL of CAT was no louder than during TSE. Sensations of CAT-vs. TSE-induced heating, noise and scanning vibrations did not differ. Conclusion: T2-/PD-CAT is diagnostically equivalent to TSE for MS lesion detection yet substantially reduces the RF exposure. Such SAR reduction facilitates high-field MRI applications at 3 Tesla or above and corresponding protocol standardizations but CAT can also be used to scan faster, at higher resolution or with more slices. According to our data, CAT is no more uncomfortable than TSE scanning.}, language = {en} } @article{DasenbrookLuDonnolaetal.2013, author = {Dasenbrook, Elliot C. and Lu, Luan and Donnola, Shannon and Weaver, David E. and Gulani, Viskas and Jakob, Peter M. and Konstan, Michael W. and Flask, Chris A.}, title = {Normalized T1 Magnetic Resonance Imaging for Assessment of Regional Lung Function in Adult Cystic Fibrosis Patients - A Cross-Sectional Study}, series = {PLOS ONE}, volume = {8}, journal = {PLOS ONE}, number = {9}, issn = {1932-6203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128346}, pages = {e73286}, year = {2013}, abstract = {Background: Cystic fibrosis (CF) patients would benefit from a safe and effective tool to detect early-stage, regional lung disease to allow for early intervention. Magnetic Resonance Imaging (MRI) is a safe, non-invasive procedure capable of providing quantitative assessments of disease without ionizing radiation. We developed a rapid normalized T1 MRI technique to detect regional lung disease in early-stage CF patients. Materials and Methods: Conventional multislice, pulmonary T1 relaxation time maps were obtained for 10 adult CF patients with normal spirometry and 5 healthy non-CF control subjects using a rapid Look-Locker MRI acquisition (5 seconds/imaging slice). Each lung absolute T1 map was separated into six regions of interest (ROI) by manually selecting upper, central, and lower lung regions in the left and right lungs. In order to reduce the effects of subject-to-subject variation, normalized T1 maps were calculated by dividing each pixel in the absolute T1 maps by the mean T1 time in the central lung region. The primary outcome was the differences in mean normalized T1 values in the upper lung regions between CF patients with normal spirometry and healthy volunteers. Results: Normalized T1 (nT1) maps showed visibly reduced subject-to-subject variation in comparison to conventional absolute T1 maps for healthy volunteers. An ROI analysis showed that the variation in the nT1 values in all regions was <= 2\% of the mean. The primary outcome, the mean (SD) of the normalized T1 values in the upper right lung regions, was significantly lower in the CF subjects [.914 (.037)] compared to the upper right lung regions of the healthy subjects [.983 (.003)] [difference of .069 (95\% confidence interval .032-.105); p=.001). Similar results were seen in the upper left lung region. Conclusion: Rapid normalized T1 MRI relaxometry obtained in 5 seconds/imaging slice may be used to detect regional early-stage lung disease in CF patients.}, language = {en} } @article{DawoodBreuerStebanietal.2023, author = {Dawood, Peter and Breuer, Felix and Stebani, Jannik and Burd, Paul and Homolya, Istv{\´a}n and Oberberger, Johannes and Jakob, Peter M. and Blaimer, Martin}, title = {Iterative training of robust k-space interpolation networks for improved image reconstruction with limited scan specific training samples}, series = {Magnetic Resonance in Medicine}, volume = {89}, journal = {Magnetic Resonance in Medicine}, number = {2}, doi = {10.1002/mrm.29482}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312306}, pages = {812 -- 827}, year = {2023}, abstract = {To evaluate an iterative learning approach for enhanced performance of robust artificial-neural-networks for k-space interpolation (RAKI), when only a limited amount of training data (auto-calibration signals [ACS]) are available for accelerated standard 2D imaging. Methods In a first step, the RAKI model was tailored for the case of limited training data amount. In the iterative learning approach (termed iterative RAKI [iRAKI]), the tailored RAKI model is initially trained using original and augmented ACS obtained from a linear parallel imaging reconstruction. Subsequently, the RAKI convolution filters are refined iteratively using original and augmented ACS extracted from the previous RAKI reconstruction. Evaluation was carried out on 200 retrospectively undersampled in vivo datasets from the fastMRI neuro database with different contrast settings. Results For limited training data (18 and 22 ACS lines for R = 4 and R = 5, respectively), iRAKI outperforms standard RAKI by reducing residual artifacts and yields better noise suppression when compared to standard parallel imaging, underlined by quantitative reconstruction quality metrics. Additionally, iRAKI shows better performance than both GRAPPA and standard RAKI in case of pre-scan calibration with varying contrast between training- and undersampled data. Conclusion RAKI benefits from the iterative learning approach, which preserves the noise suppression feature, but requires less original training data for the accurate reconstruction of standard 2D images thereby improving net acceleration.}, language = {en} } @article{GotschyBauerWinteretal.2017, author = {Gotschy, Alexander and Bauer, Wolfgang R. and Winter, Patrick and Nordbeck, Peter and Rommel, Eberhard and Jakob, Peter M. and Herold, Volker}, title = {Local versus global aortic pulse wave velocity in early atherosclerosis: An animal study in ApoE\(^{-/-}\) mice using ultrahigh field MRI}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0171603}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171824}, year = {2017}, abstract = {Increased aortic stiffness is known to be associated with atherosclerosis and has a predictive value for cardiovascular events. This study aims to investigate the local distribution of early arterial stiffening due to initial atherosclerotic lesions. Therefore, global and local pulse wave velocity (PWV) were measured in ApoE\(^{-/-}\) and wild type (WT) mice using ultrahigh field MRI. For quantification of global aortic stiffness, a new multi-point transit-time (TT) method was implemented and validated to determine the global PWV in the murine aorta. Local aortic stiffness was measured by assessing the local PWV in the upper abdominal aorta, using the flow/area (QA) method. Significant differences between age matched ApoE\(^{-/-}\) and WT mice were determined for global and local PWV measurements (global PWV: ApoE\(^{-/-}\): 2.7 ±0.2m/s vs WT: 2.1±0.2m/s, P<0.03; local PWV: ApoE\(^{-/-}\): 2.9±0.2m/s vs WT: 2.2±0.2m/s, P<0.03). Within the WT mouse group, the global PWV correlated well with the local PWV in the upper abdominal aorta (R\(^2\) = 0.75, P<0.01), implying a widely uniform arterial elasticity. In ApoE\(^{-/-}\) animals, however, no significant correlation between individual local and global PWV was present (R\(^2\) = 0.07, P = 0.53), implying a heterogeneous distribution of vascular stiffening in early atherosclerosis. The assessment of global PWV using the new multi-point TT measurement technique was validated against a pressure wire measurement in a vessel phantom and showed excellent agreement. The experimental results demonstrate that vascular stiffening caused by early atherosclerosis is unequally distributed over the length of large vessels. This finding implies that assessing heterogeneity of arterial stiffness by multiple local measurements of PWV might be more sensitive than global PWV to identify early atherosclerotic lesions.}, language = {en} } @article{GramGenslerAlbertovaetal.2022, author = {Gram, Maximilian and Gensler, Daniel and Albertova, Petra and Gutjahr, Fabian Tobias and Lau, Kolja and Arias-Loza, Paula-Anahi and Jakob, Peter Michael and Nordbeck, Peter}, title = {Quantification correction for free-breathing myocardial T1ρ mapping in mice using a recursively derived description of a T\(_{1p}\)\(^{*}\) relaxation pathway}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {24}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {1}, doi = {10.1186/s12968-022-00864-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300491}, year = {2022}, abstract = {Background Fast and accurate T1ρ mapping in myocardium is still a major challenge, particularly in small animal models. The complex sequence design owing to electrocardiogram and respiratory gating leads to quantification errors in in vivo experiments, due to variations of the T\(_{1p}\) relaxation pathway. In this study, we present an improved quantification method for T\(_{1p}\) using a newly derived formalism of a T\(_{1p}\)\(^{*}\) relaxation pathway. Methods The new signal equation was derived by solving a recursion problem for spin-lock prepared fast gradient echo readouts. Based on Bloch simulations, we compared quantification errors using the common monoexponential model and our corrected model. The method was validated in phantom experiments and tested in vivo for myocardial T\(_{1p}\) mapping in mice. Here, the impact of the breath dependent spin recovery time T\(_{rec}\) on the quantification results was examined in detail. Results Simulations indicate that a correction is necessary, since systematically underestimated values are measured under in vivo conditions. In the phantom study, the mean quantification error could be reduced from - 7.4\% to - 0.97\%. In vivo, a correlation of uncorrected T\(_{1p}\) with the respiratory cycle was observed. Using the newly derived correction method, this correlation was significantly reduced from r = 0.708 (p < 0.001) to r = 0.204 and the standard deviation of left ventricular T\(_{1p}\) values in different animals was reduced by at least 39\%. Conclusion The suggested quantification formalism enables fast and precise myocardial T\(_{1p}\) quantification for small animals during free breathing and can improve the comparability of study results. Our new technique offers a reasonable tool for assessing myocardial diseases, since pathologies that cause a change in heart or breathing rates do not lead to systematic misinterpretations. Besides, the derived signal equation can be used for sequence optimization or for subsequent correction of prior study results.}, language = {en} } @article{GramGenslerWinteretal.2022, author = {Gram, Maximilian and Gensler, Daniel and Winter, Patrick and Seethaler, Michael and Arias-Loza, Paula Anahi and Oberberger, Johannes and Jakob, Peter Michael and Nordbeck, Peter}, title = {Fast myocardial T\(_{1P}\) mapping in mice using k-space weighted image contrast and a Bloch simulation-optimized radial sampling pattern}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {35}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {2}, issn = {1352-8661}, doi = {10.1007/s10334-021-00951-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268903}, pages = {325-340}, year = {2022}, abstract = {Purpose T\(_{1P}\) dispersion quantification can potentially be used as a cardiac magnetic resonance index for sensitive detection of myocardial fibrosis without the need of contrast agents. However, dispersion quantification is still a major challenge, because T\(_{1P}\) mapping for different spin lock amplitudes is a very time consuming process. This study aims to develop a fast and accurate T\(_{1P}\) mapping sequence, which paves the way to cardiac T1ρ dispersion quantification within the limited measurement time of an in vivo study in small animals. Methods A radial spin lock sequence was developed using a Bloch simulation-optimized sampling pattern and a view-sharing method for image reconstruction. For validation, phantom measurements with a conventional sampling pattern and a gold standard sequence were compared to examine T\(_{1P}\) quantification accuracy. The in vivo validation of T\(_{1P}\) mapping was performed in N = 10 mice and in a reproduction study in a single animal, in which ten maps were acquired in direct succession. Finally, the feasibility of myocardial dispersion quantification was tested in one animal. Results The Bloch simulation-based sampling shows considerably higher image quality as well as improved T\(_{1P}\) quantification accuracy (+ 56\%) and precision (+ 49\%) compared to conventional sampling. Compared to the gold standard sequence, a mean deviation of - 0.46 ± 1.84\% was observed. The in vivo measurements proved high reproducibility of myocardial T\(_{1P}\) mapping. The mean T\(_{1P}\) in the left ventricle was 39.5 ± 1.2 ms for different animals and the maximum deviation was 2.1\% in the successive measurements. The myocardial T\(_{1P}\) dispersion slope, which was measured for the first time in one animal, could be determined to be 4.76 ± 0.23 ms/kHz. Conclusion This new and fast T\(_{1P}\) quantification technique enables high-resolution myocardial T\(_{1P}\) mapping and even dispersion quantification within the limited time of an in vivo study and could, therefore, be a reliable tool for improved tissue characterization.}, language = {en} } @article{HeroldHerzWinteretal.2017, author = {Herold, Volker and Herz, Stefan and Winter, Patrick and Gutjahr, Fabian Tobias and Andelovic, Kristina and Bauer, Wolfgang Rudolf and Jakob, Peter Michael}, title = {Assessment of local pulse wave velocity distribution in mice using k-t BLAST PC-CMR with semi-automatic area segmentation.}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {19}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {77}, doi = {10.1186/s12968-017-0382-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157696}, year = {2017}, abstract = {Background: Local aortic pulse wave velocity (PWV) is a measure for vascular stiffness and has a predictive value for cardiovascular events. Ultra high field CMR scanners allow the quantification of local PWV in mice, however these systems are yet unable to monitor the distribution of local elasticities. Methods: In the present study we provide a new accelerated method to quantify local aortic PWV in mice with phase-contrast cardiovascular magnetic resonance imaging (PC-CMR) at 17.6 T. Based on a k-t BLAST (Broad-use Linear Acquisition Speed-up Technique) undersampling scheme, total measurement time could be reduced by a factor of 6. The fast data acquisition enables to quantify the local PWV at several locations along the aortic blood vessel based on the evaluation of local temporal changes in blood flow and vessel cross sectional area. To speed up post processing and to eliminate operator bias, we introduce a new semi-automatic segmentation algorithm to quantify cross-sectional areas of the aortic vessel. The new methods were applied in 10 eight-month-old mice (4 C57BL/6J-mice and 6 ApoE\(^{(-/-)}\)-mice) at 12 adjacent locations along the abdominal aorta. Results: Accelerated data acquisition and semi-automatic post-processing delivered reliable measures for the local PWV, similiar to those obtained with full data sampling and manual segmentation. No statistically significant differences of the mean values could be detected for the different measurement approaches. Mean PWV values were elevated for the ApoE\(^{(-/-)}\)-group compared to the C57BL/6J-group (3.5 ± 0.7 m/s vs. 2.2 ± 0.4 m/s, p < 0.01). A more heterogeneous PWV-distribution in the ApoE \(^{(-/-)}\)-animals could be observed compared to the C57BL/6J-mice, representing the local character of lesion development in atherosclerosis. Conclusion: In the present work, we showed that k-t BLAST PC-MRI enables the measurement of the local PWV distribution in the mouse aorta. The semi-automatic segmentation method based on PC-CMR data allowed rapid determination of local PWV. The findings of this study demonstrate the ability of the proposed methods to non-invasively quantify the spatial variations in local PWV along the aorta of ApoE\(^{(-/-)}\)-mice as a relevant model of atherosclerosis.}, language = {en} } @article{HeroldKampfJakob2019, author = {Herold, Volker and Kampf, Thomas and Jakob, Peter Michael}, title = {Dynamic magnetic resonance scattering}, series = {Communications Physics}, volume = {2}, journal = {Communications Physics}, doi = {10.1038/s42005-019-0136-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201091}, pages = {46}, year = {2019}, abstract = {Dynamic light scattering is a popular technique to determine the size distribution of small particles in the sub micrometer region. It operates in reciprocal space, by analyzing the signal fluctuations with the photon auto correlation function. Equally, pulsed field gradient magnetic resonance is a technique generating data in the reciprocal space of the density distribution of an object. Here we show the feasibility of employing a magnetic resonance imaging system as a dynamic scattering device similar to dynamic light scattering appliances. By acquiring a time series of single data points from reciprocal space, analogue to dynamic light scattering, we demonstrate the examination of motion patterns of microscopic particles. This method allows the examination of particle dynamics significantly below the spatial resolution of magnetic resonance imaging. It is not limited by relaxation times and covers a wide field of applications for particle or cell motion in opaque media.}, language = {en} }