@article{MunzJakobBorisjuk2016, author = {Munz, Eberhard and Jakob, Peter M. and Borisjuk, Ljudmilla}, title = {The potential of nuclear magnetic resonance to track lipids in planta}, series = {Biochimie}, volume = {130}, journal = {Biochimie}, doi = {10.1016/j.biochi.2016.07.014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186828}, pages = {97-108}, year = {2016}, abstract = {Nuclear Magnetic Resonance (NMR) provides a highly flexible platform for non invasive analysis and imaging biological samples, since the manipulation of nuclear spin allows the tailoring of experiments to maximize the informativeness of the data. MRI is capable of visualizing a holistic picture of the lipid storage in living plant/seed. This review has sought to explain how the technology can be used to acquire functional and physiological data from plant samples, and how to exploit it to characterize lipid deposition in vivo. At the same time, we have referred to the current limitations of NMR technology as applied to plants, and in particular of the difficulty of transferring methodologies optimized for animal/medical subjects to plant ones. A forward look into likely developments in the field is included, anticipating its key future role in the study of living plant.}, language = {en} } @article{GotschyBauerWinteretal.2017, author = {Gotschy, Alexander and Bauer, Wolfgang R. and Winter, Patrick and Nordbeck, Peter and Rommel, Eberhard and Jakob, Peter M. and Herold, Volker}, title = {Local versus global aortic pulse wave velocity in early atherosclerosis: An animal study in ApoE\(^{-/-}\) mice using ultrahigh field MRI}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0171603}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171824}, year = {2017}, abstract = {Increased aortic stiffness is known to be associated with atherosclerosis and has a predictive value for cardiovascular events. This study aims to investigate the local distribution of early arterial stiffening due to initial atherosclerotic lesions. Therefore, global and local pulse wave velocity (PWV) were measured in ApoE\(^{-/-}\) and wild type (WT) mice using ultrahigh field MRI. For quantification of global aortic stiffness, a new multi-point transit-time (TT) method was implemented and validated to determine the global PWV in the murine aorta. Local aortic stiffness was measured by assessing the local PWV in the upper abdominal aorta, using the flow/area (QA) method. Significant differences between age matched ApoE\(^{-/-}\) and WT mice were determined for global and local PWV measurements (global PWV: ApoE\(^{-/-}\): 2.7 ±0.2m/s vs WT: 2.1±0.2m/s, P<0.03; local PWV: ApoE\(^{-/-}\): 2.9±0.2m/s vs WT: 2.2±0.2m/s, P<0.03). Within the WT mouse group, the global PWV correlated well with the local PWV in the upper abdominal aorta (R\(^2\) = 0.75, P<0.01), implying a widely uniform arterial elasticity. In ApoE\(^{-/-}\) animals, however, no significant correlation between individual local and global PWV was present (R\(^2\) = 0.07, P = 0.53), implying a heterogeneous distribution of vascular stiffening in early atherosclerosis. The assessment of global PWV using the new multi-point TT measurement technique was validated against a pressure wire measurement in a vessel phantom and showed excellent agreement. The experimental results demonstrate that vascular stiffening caused by early atherosclerosis is unequally distributed over the length of large vessels. This finding implies that assessing heterogeneity of arterial stiffness by multiple local measurements of PWV might be more sensitive than global PWV to identify early atherosclerotic lesions.}, language = {en} } @article{ReiterGenslerRitteretal.2012, author = {Reiter, Theresa and Gensler, Daniel and Ritter, Oliver and Weiss, Ingo and Geistert, Wolfgang and Kaufmann, Ralf and Hoffmeister, Sabine and Friedrich, Michael T. and Wintzheimer, Stefan and D{\"u}ring, Markus and Nordbeck, Peter and Jakob, Peter M. and Ladd, Mark E. and Quick, Harald H. and Bauer, Wolfgang R.}, title = {Direct cooling of the catheter tip increases safety for CMR-guided electrophysiological procedures}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {14}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {12}, doi = {10.1186/1532-429X-14-12}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134927}, year = {2012}, abstract = {Background: One of the safety concerns when performing electrophysiological (EP) procedures under magnetic resonance (MR) guidance is the risk of passive tissue heating due to the EP catheter being exposed to the radiofrequency (RF) field of the RF transmitting body coil. Ablation procedures that use catheters with irrigated tips are well established therapeutic options for the treatment of cardiac arrhythmias and when used in a modified mode might offer an additional system for suppressing passive catheter heating. Methods: A two-step approach was chosen. Firstly, tests on passive catheter heating were performed in a 1.5 T Avanto system (Siemens Healthcare Sector, Erlangen, Germany) using a ASTM Phantom in order to determine a possible maximum temperature rise. Secondly, a phantom was designed for simulation of the interface between blood and the vascular wall. The MR-RF induced temperature rise was simulated by catheter tip heating via a standard ablation generator. Power levels from 1 to 6 W were selected. Ablation duration was 120 s with no tip irrigation during the first 60 s and irrigation at rates from 2 ml/min to 35 ml/min for the remaining 60 s (Biotronik Qiona Pump, Berlin, Germany). The temperature was measured with fluoroscopic sensors (Luxtron, Santa Barbara, CA, USA) at a distance of 0 mm, 2 mm, 4 mm, and 6 mm from the catheter tip. Results: A maximum temperature rise of 22.4 degrees C at the catheter tip was documented in the MR scanner. This temperature rise is equivalent to the heating effect of an ablator's power output of 6 W at a contact force of the weight of 90 g (0.883 N). The catheter tip irrigation was able to limit the temperature rise to less than 2 degrees C for the majority of examined power levels, and for all examined power levels the residual temperature rise was less than 8 degrees C. Conclusion: Up to a maximum of 22.4 degrees C, the temperature rise at the tissue surface can be entirely suppressed by using the catheter's own irrigation system. The irrigated tip system can be used to increase MR safety of EP catheters by suppressing the effects of unwanted passive catheter heating due to RF exposure from the MR scanner.}, language = {en} }