@article{WeberLassalleHaukeRamseretal.2018, author = {Weber-Lassalle, Nana and Hauke, Jan and Ramser, Juliane and Richters, Lisa and Groß, Eva and Bl{\"u}mcke, Britta and Gehrig, Andrea and Kahlert, Anne-Karin and M{\"u}ller, Clemens R. and Hackmann, Karl and Honisch, Ellen and Weber-Lassalle, Konstantin and Niederacher, Dieter and Borde, Julika and Thiele, Holger and Ernst, Corinna and Altm{\"u}ller, Janine and Neidhardt, Guido and N{\"u}rnberg, Peter and Klaschik, Kristina and Schroeder, Christopher and Platzer, Konrad and Volk, Alexander E. and Wang-Gohrke, Shan and Just, Walter and Auber, Bernd and Kubisch, Christian and Schmidt, Gunnar and Horvath, Judit and Wappenschmidt, Barbara and Engel, Christoph and Arnold, Norbert and Dworniczak, Bernd and Rhiem, Kerstin and Meindl, Alfons and Schmutzler, Rita K. and Hahnen, Eric}, title = {BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer}, series = {Breast Cancer Research}, volume = {20}, journal = {Breast Cancer Research}, doi = {10.1186/s13058-018-0935-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233433}, year = {2018}, abstract = {Background Germline mutations in the BRIP1 gene have been described as conferring a moderate risk for ovarian cancer (OC), while the role of BRIP1 in breast cancer (BC) pathogenesis remains controversial. Methods To assess the role of deleterious BRIP1 germline mutations in BC/OC predisposition, 6341 well-characterized index patients with BC, 706 index patients with OC, and 2189 geographically matched female controls were screened for loss-of-function (LoF) mutations and potentially damaging missense variants. All index patients met the inclusion criteria of the German Consortium for Hereditary Breast and Ovarian Cancer for germline testing and tested negative for pathogenic BRCA1/2 variants. Results BRIP1 LoF mutations confer a high OC risk in familial index patients (odds ratio (OR) = 20.97, 95\% confidence interval (CI) = 12.02-36.57, P < 0.0001) and in the subgroup of index patients with late-onset OC (OR = 29.91, 95\% CI = 14.99-59.66, P < 0.0001). No significant association of BRIP1 LoF mutations with familial BC was observed (OR = 1.81 95\% CI = 1.00-3.30, P = 0.0623). In the subgroup of familial BC index patients without a family history of OC there was also no apparent association (OR = 1.42, 95\% CI = 0.70-2.90, P = 0.3030). In 1027 familial BC index patients with a family history of OC, the BRIP1 mutation prevalence was significantly higher than that observed in controls (OR = 3.59, 95\% CI = 1.43-9.01; P = 0.0168). Based on the negative association between BRIP1 LoF mutations and familial BC in the absence of an OC family history, we conclude that the elevated mutation prevalence in the latter cohort was driven by the occurrence of OC in these families. Compared with controls, predicted damaging rare missense variants were significantly more prevalent in OC (P = 0.0014) but not in BC (P = 0.0693) patients. Conclusions To avoid ambiguous results, studies aimed at assessing the impact of candidate predisposition gene mutations on BC risk might differentiate between BC index patients with an OC family history and those without. In familial cases, we suggest that BRIP1 is a high-risk gene for late-onset OC but not a BC predisposition gene, though minor effects cannot be excluded.}, language = {en} } @article{HaukeHorvathGrossetal.2018, author = {Hauke, Jan and Horvath, Judit and Groß, Eva and Gehrig, Andrea and Honisch, Ellen and Hackmann, Karl and Schmidt, Gunnar and Arnold, Norbert and Faust, Ulrike and Sutter, Christian and Hentschel, Julia and Wang-Gohrke, Shan and Smogavec, Mateja and Weber, Bernhard H. F. and Weber-Lassalle, Nana and Weber-Lassalle, Konstantin and Borde, Julika and Ernst, Corinna and Altm{\"u}ller, Janine and Volk, Alexander E. and Thiele, Holger and H{\"u}bbel, Verena and N{\"u}rnberg, Peter and Keupp, Katharina and Versmold, Beatrix and Pohl, Esther and Kubisch, Christian and Grill, Sabine and Paul, Victoria and Herold, Natalie and Lichey, Nadine and Rhiem, Kerstin and Ditsch, Nina and Ruckert, Christian and Wappenschmidt, Barbara and Auber, Bernd and Rump, Andreas and Niederacher, Dieter and Haaf, Thomas and Ramser, Juliane and Dworniczak, Bernd and Engel, Christoph and Meindl, Alfons and Schmutzler, Rita K. and Hahnen, Eric}, title = {Gene panel testing of 5589 BRCA1/2-negative index patients with breast cancer in a routine diagnostic setting: results of the German Consortium for Hereditary Breast and Ovarian Cancer}, series = {Cancer Medicine}, journal = {Cancer Medicine}, doi = {10.1002/cam4.1376}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227902}, pages = {1349-1358}, year = {2018}, abstract = {The prevalence of germ line mutations in non-BRCA1/2 genes associated with hereditary breast cancer (BC) is low, and the role of some of these genes in BC predisposition and pathogenesis is conflicting. In this study, 5589 consecutive BC index patients negative for pathogenic BRCA1/2 mutations and 2189 female controls were screened for germ line mutations in eight cancer predisposition genes (ATM, CDH1, CHEK2, NBN, PALB2, RAD51C, RAD51D, and TP53). All patients met the inclusion criteria of the German Consortium for Hereditary Breast and Ovarian Cancer for germ line testing. The highest mutation prevalence was observed in the CHEK2 gene (2.5\%), followed by ATM (1.5\%) and PALB2 (1.2\%). The mutation prevalence in each of the remaining genes was 0.3\% or lower. Using Exome Aggregation Consortium control data, we confirm significant associations of heterozygous germ line mutations with BC for ATM (OR: 3.63, 95\%CI: 2.67-4.94), CDH1 (OR: 17.04, 95\%CI: 3.54-82), CHEK2 (OR: 2.93, 95\%CI: 2.29-3.75), PALB2 (OR: 9.53, 95\%CI: 6.25-14.51), and TP53 (OR: 7.30, 95\%CI: 1.22-43.68). NBN germ line mutations were not significantly associated with BC risk (OR:1.39, 95\%CI: 0.73-2.64). Due to their low mutation prevalence, the RAD51C and RAD51D genes require further investigation. Compared with control datasets, predicted damaging rare missense variants were significantly more prevalent in CHEK2 and TP53 in BC index patients. Compared with the overall sample, only TP53 mutation carriers show a significantly younger age at first BC diagnosis. We demonstrate a significant association of deleterious variants in the CHEK2, PALB2, and TP53 genes with bilateral BC. Both, ATM and CHEK2, were negatively associated with triple-negative breast cancer (TNBC) and estrogen receptor (ER)-negative tumor phenotypes. A particularly high CHEK2 mutation prevalence (5.2\%) was observed in patients with human epidermal growth factor receptor 2 (HER2)-positive tumors.}, language = {en} }