@article{DoerckGoebelWeiseetal.2010, author = {Doerck, Sebastian and Goebel, Kerstin and Weise, Gesa and Schneider-Hohendorf, Tilman and Reinhardt, Michael and Hauff, Peter and Schwab, Nicholas and Linker, Ralf and Maeurer, Mathias and Meuth, Sven G. and Wiendl, Heinz}, title = {Temporal Pattern of ICAM-I Mediated Regulatory T Cell Recruitment to Sites of Inflammation in Adoptive Transfer Model of Multiple Sclerosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68565}, year = {2010}, abstract = {Migration of immune cells to the target organ plays a key role in autoimmune disorders like multiple sclerosis (MS). However, the exact underlying mechanisms of this active process during autoimmune lesion pathogenesis remain elusive. To test if pro-inflammatory and regulatory T cells migrate via a similar molecular mechanism, we analyzed the expression of different adhesion molecules, as well as the composition of infiltrating T cells in an in vivo model of MS, adoptive transfer experimental autoimmune encephalomyelitis in rats. We found that the upregulation of ICAM-I and VCAM-I parallels the development of clinical disease onset, but persists on elevated levels also in the phase of clinical remission. However, the composition of infiltrating T cells found in the developing versus resolving lesion phase changed over time, containing increased numbers of regulatory T cells (FoxP3) only in the phase of clinical remission. In order to test the relevance of the expression of cell adhesion molecules, animals were treated with purified antibodies to ICAM-I and VCAM-I either in the phase of active disease or in early remission. Treatment with a blocking ICAM-I antibody in the phase of disease progression led to a milder disease course. However, administration during early clinical remission aggravates clinical symptoms. Treatment with anti-VCAM-I at different timepoints had no significant effect on the disease course. In summary, our results indicate that adhesion molecules are not only important for capture and migration of pro-inflammatory T cells into the central nervous system, but also permit access of anti-inflammatory cells, such as regulatory T cells. Therefore it is likely to assume that intervention at the blood brain barrier is time dependent and could result in different therapeutic outcomes depending on the phase of CNS lesion development.}, subject = {Multiple Sklerose}, language = {en} } @article{LoddeForschnerHasseletal.2021, author = {Lodde, Georg and Forschner, Andrea and Hassel, Jessica and Wulfken, Lena M. and Meier, Friedegund and Mohr, Peter and K{\"a}hler, Katharina and Schilling, Bastian and Loquai, Carmen and Berking, Carola and H{\"u}ning, Svea and Schatton, Kerstin and Gebhardt, Christoffer and Eckardt, Julia and Gutzmer, Ralf and Reinhardt, Lydia and Glutsch, Valerie and Nikfarjam, Ulrike and Erdmann, Michael and Stang, Andreas and Kowall, Bernd and Roesch, Alexander and Ugurel, Selma and Zimmer, Lisa and Schadendorf, Dirk and Livingstone, Elisabeth}, title = {Factors influencing the adjuvant therapy decision: results of a real-world multicenter data analysis of 904 melanoma patients}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {10}, issn = {2072-6694}, doi = {10.3390/cancers13102319}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239583}, year = {2021}, abstract = {Adjuvant treatment of melanoma patients with immune-checkpoint inhibition (ICI) and targeted therapy (TT) significantly improved recurrence-free survival. This study investigates the real-world situation of 904 patients from 13 German skin cancer centers with an indication for adjuvant treatment since the approval of adjuvant ICI and TT. From adjusted log-binomial regression models, we estimated relative risks for associations between various influence factors and treatment decisions (adjuvant therapy yes/no, TT vs. ICI in BRAF mutant patients). Of these patients, 76.9\% (95\% CI 74-80) opted for a systemic adjuvant treatment. The probability of starting an adjuvant treatment was 26\% lower in patients >65 years (RR 0.74, 95\% CI 68-80). The most common reasons against adjuvant treatment given by patients were age (29.4\%, 95\% CI 24-38), and fear of adverse events (21.1\%, 95\% CI 16-28) and impaired quality of life (11.9\%, 95\% CI 7-16). Of all BRAF-mutated patients who opted for adjuvant treatment, 52.9\% (95\% CI 47-59) decided for ICI. Treatment decision for TT or ICI was barely associated with age, gender and tumor stage, but with comorbidities and affiliated center. Shortly after their approval, adjuvant treatments have been well accepted by physicians and patients. Age plays a decisive role in the decision for adjuvant treatment, while pre-existing autoimmune disease and regional differences influence the choice between TT or ICI.}, language = {en} } @article{BenoitAdelmanReinhardtetal.2016, author = {Benoit, Joshua B. and Adelman, Zach N. and Reinhardt, Klaus and Dolan, Amanda and Poelchau, Monica and Jennings, Emily C. and Szuter, Elise M. and Hagan, Richard W. and Gujar, Hemant and Shukla, Jayendra Nath and Zhu, Fang and Mohan, M. and Nelson, David R. and Rosendale, Andrew J. and Derst, Christian and Resnik, Valentina and Wernig, Sebastian and Menegazzi, Pamela and Wegener, Christian and Peschel, Nicolai and Hendershot, Jacob M. and Blenau, Wolfgang and Predel, Reinhard and Johnston, Paul R. and Ioannidis, Panagiotis and Waterhouse, Robert M. and Nauen, Ralf and Schorn, Corinna and Ott, Mark-Christoph and Maiwald, Frank and Johnston, J. Spencer and Gondhalekar, Ameya D. and Scharf, Michael E. and Raje, Kapil R. and Hottel, Benjamin A. and Armis{\´e}n, David and Crumi{\`e}re, Antonin Jean Johan and Refki, Peter Nagui and Santos, Maria Emilia and Sghaier, Essia and Viala, S{\`e}verine and Khila, Abderrahman and Ahn, Seung-Joon and Childers, Christopher and Lee, Chien-Yueh and Lin, Han and Hughes, Daniel S.T. and Duncan, Elizabeth J. and Murali, Shwetha C. and Qu, Jiaxin and Dugan, Shannon and Lee, Sandra L. and Chao, Hsu and Dinh, Huyen and Han, Yi and Doddapaneni, Harshavardhan and Worley, Kim C. and Muzny, Donna M. and Wheeler, David and Panfilio, Kristen A. and Jentzsch, Iris M. Vargas and Jentzsch, IMV and Vargo, Edward L. and Booth, Warren and Friedrich, Markus and Weirauch, Matthew T. and Anderson, Michelle A.E. and Jones, Jeffery W. and Mittapalli, Omprakash and Zhao, Chaoyang and Zhou, Jing-Jiang and Evans, Jay D. and Attardo, Geoffrey M. and Robertson, Hugh M. and Zdobnov, Evgeny M. and Ribeiro, Jose M.C. and Gibbs, Richard A. and Werren, John H. and Palli, Subba R. and Schal, Coby and Richards, Stephen}, title = {Unique features of a global human ectoparasite identified through sequencing of the bed bug genome}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, number = {10165}, doi = {10.1038/ncomms10165}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166221}, year = {2016}, abstract = {The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host-symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human-bed bug and symbiont-bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite.}, language = {en} } @article{MassihVehSchenkeetal.2023, author = {Massih, Bita and Veh, Alexander and Schenke, Maren and Mungwa, Simon and Seeger, Bettina and Selvaraj, Bhuvaneish T. and Chandran, Siddharthan and Reinhardt, Peter and Sterneckert, Jared and Hermann, Andreas and Sendtner, Michael and L{\"u}ningschr{\"o}r, Patrick}, title = {A 3D cell culture system for bioengineering human neuromuscular junctions to model ALS}, series = {Frontiers in Cell and Developmental Biology}, volume = {11}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2023.996952}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304161}, year = {2023}, abstract = {The signals that coordinate and control movement in vertebrates are transmitted from motoneurons (MNs) to their target muscle cells at neuromuscular junctions (NMJs). Human NMJs display unique structural and physiological features, which make them vulnerable to pathological processes. NMJs are an early target in the pathology of motoneuron diseases (MND). Synaptic dysfunction and synapse elimination precede MN loss suggesting that the NMJ is the starting point of the pathophysiological cascade leading to MN death. Therefore, the study of human MNs in health and disease requires cell culture systems that enable the connection to their target muscle cells for NMJ formation. Here, we present a human neuromuscular co-culture system consisting of induced pluripotent stem cell (iPSC)-derived MNs and 3D skeletal muscle tissue derived from myoblasts. We used self-microfabricated silicone dishes combined with Velcro hooks to support the formation of 3D muscle tissue in a defined extracellular matrix, which enhances NMJ function and maturity. Using a combination of immunohistochemistry, calcium imaging, and pharmacological stimulations, we characterized and confirmed the function of the 3D muscle tissue and the 3D neuromuscular co-cultures. Finally, we applied this system as an in vitro model to study the pathophysiology of Amyotrophic Lateral Sclerosis (ALS) and found a decrease in neuromuscular coupling and muscle contraction in co-cultures with MNs harboring ALS-linked SOD1 mutation. In summary, the human 3D neuromuscular cell culture system presented here recapitulates aspects of human physiology in a controlled in vitro setting and is suitable for modeling of MND.}, language = {en} }