@article{WilsonAmblerLeeetal.2019, author = {Wilson, Duncan and Ambler, Gareth and Lee, Keon-Joo and Lim, Jae-Sung and Shiozawa, Masayuki and Koga, Masatoshi and Li, Linxin and Lovelock, Caroline and Chabriat, Hugues and Hennerici, Michael and Wong, Yuen Kwun and Mak, Henry Ka Fung and Prats-S{\´a}nchez, Luis and Mart{\´i}nez-Dome{\~n}o, Alejandro and Inamura, Shigeru and Yoshifuji, Kazuhisa and Arsava, Ethem Murat and Horstmann, Solveig and Purrucker, Jan and Lam, Bonnie Yin Ka and Wong, Adrian and Kim, Young Dae and Song, Tae-Jin and Schrooten, Maarten and Lemmens, Robin and Eppinger, Sebastian and Gattringer, Thomas and Uysal, Ender and Tanriverdi, Zeynep and Bornstein, Natan M and Ben Assayag, Einor and Hallevi, Hen and Tanaka, Jun and Hara, Hideo and Coutts, Shelagh B and Hert, Lisa and Polymeris, Alexandros and Seiffge, David J and Lyrer, Philippe and Algra, Ale and Kappelle, Jaap and Salman, Rustam Al-Shahi and J{\"a}ger, Hans R and Lip, Gregory Y H and Mattle, Heinrich P and Panos, Leonidas D and Mas, Jean-Louis and Legrand, Laurence and Karayiannis, Christopher and Phan, Thanh and Gunkel, Sarah and Christ, Nicolas and Abrigo, Jill and Leung, Thomas and Chu, Winnie and Chappell, Francesca and Makin, Stephen and Hayden, Derek and Williams, David J and Kooi, M Eline and van Dam-Nolen, Dianne H K and Barbato, Carmen and Browning, Simone and Wiegertjes, Kim and Tuladhar, Anil M and Maaijwee, Noortje and Guevarra, Christine and Yatawara, Chathuri and Mendyk, Anne-Marie and Delmaire, Christine and K{\"o}hler, Sebastian and van Oostenbrugge, Robert and Zhou, Ying and Xu, Chao and Hilal, Saima and Gyanwali, Bibek and Chen, Christopher and Lou, Min and Staals, Julie and Bordet, R{\´e}gis and Kandiah, Nagaendran and de Leeuw, Frank-Erik and Simister, Robert and van der Lugt, Aad and Kelly, Peter J and Wardlaw, Joanna M and Soo, Yannie and Fluri, Felix and Srikanth, Velandai and Calvet, David and Jung, Simon and Kwa, Vincent I H and Engelter, Stefan T and Peters, Nils and Smith, Eric E and Yakushiji, Yusuke and Necioglu Orken, Dilek and Fazekas, Franz and Thijs, Vincent and Heo, Ji Hoe and Mok, Vincent and Veltkamp, Roland and Ay, Hakan and Imaizumi, Toshio and Gomez-Anson, Beatriz and Lau, Kui Kai and Jouvent, Eric and Rothwell, Peter M and Toyoda, Kazunori and Bae, Hee-Yoon and Marti-Fabregas, Joan and Werring, David J}, title = {Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies}, series = {The Lancet Neurology}, volume = {18}, journal = {The Lancet Neurology}, organization = {Microbleeds International Collaborative Network}, doi = {10.1016/S1474-4422(19)30197-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233710}, pages = {653-665}, year = {2019}, abstract = {Background Cerebral microbleeds are a neuroimaging biomarker of stroke risk. A crucial clinical question is whether cerebral microbleeds indicate patients with recent ischaemic stroke or transient ischaemic attack in whom the rate of future intracranial haemorrhage is likely to exceed that of recurrent ischaemic stroke when treated with antithrombotic drugs. We therefore aimed to establish whether a large burden of cerebral microbleeds or particular anatomical patterns of cerebral microbleeds can identify ischaemic stroke or transient ischaemic attack patients at higher absolute risk of intracranial haemorrhage than ischaemic stroke. Methods We did a pooled analysis of individual patient data from cohort studies in adults with recent ischaemic stroke or transient ischaemic attack. Cohorts were eligible for inclusion if they prospectively recruited adult participants with ischaemic stroke or transient ischaemic attack; included at least 50 participants; collected data on stroke events over at least 3 months follow-up; used an appropriate MRI sequence that is sensitive to magnetic susceptibility; and documented the number and anatomical distribution of cerebral microbleeds reliably using consensus criteria and validated scales. Our prespecified primary outcomes were a composite of any symptomatic intracranial haemorrhage or ischaemic stroke, symptomatic intracranial haemorrhage, and symptomatic ischaemic stroke. We registered this study with the PROSPERO international prospective register of systematic reviews, number CRD42016036602. Findings Between Jan 1, 1996, and Dec 1, 2018, we identified 344 studies. After exclusions for ineligibility or declined requests for inclusion, 20 322 patients from 38 cohorts (over 35 225 patient-years of follow-up; median 1·34 years [IQR 0·19-2·44]) were included in our analyses. The adjusted hazard ratio [aHR] comparing patients with cerebral microbleeds to those without was 1·35 (95\% CI 1·20-1·50) for the composite outcome of intracranial haemorrhage and ischaemic stroke; 2·45 (1·82-3·29) for intracranial haemorrhage and 1·23 (1·08-1·40) for ischaemic stroke. The aHR increased with increasing cerebral microbleed burden for intracranial haemorrhage but this effect was less marked for ischaemic stroke (for five or more cerebral microbleeds, aHR 4·55 [95\% CI 3·08-6·72] for intracranial haemorrhage vs 1·47 [1·19-1·80] for ischaemic stroke; for ten or more cerebral microbleeds, aHR 5·52 [3·36-9·05] vs 1·43 [1·07-1·91]; and for ≥20 cerebral microbleeds, aHR 8·61 [4·69-15·81] vs 1·86 [1·23-2·82]). However, irrespective of cerebral microbleed anatomical distribution or burden, the rate of ischaemic stroke exceeded that of intracranial haemorrhage (for ten or more cerebral microbleeds, 64 ischaemic strokes [95\% CI 48-84] per 1000 patient-years vs 27 intracranial haemorrhages [17-41] per 1000 patient-years; and for ≥20 cerebral microbleeds, 73 ischaemic strokes [46-108] per 1000 patient-years vs 39 intracranial haemorrhages [21-67] per 1000 patient-years). Interpretation In patients with recent ischaemic stroke or transient ischaemic attack, cerebral microbleeds are associated with a greater relative hazard (aHR) for subsequent intracranial haemorrhage than for ischaemic stroke, but the absolute risk of ischaemic stroke is higher than that of intracranial haemorrhage, regardless of cerebral microbleed presence, antomical distribution, or burden.}, language = {en} } @article{WaszakNorthcottBuchhalteretal.2018, author = {Waszak, Sebastian M and Northcott, Paul A and Buchhalter, Ivo and Robinson, Giles W and Sutter, Christian and Groebner, Susanne and Grund, Kerstin B and Brugi{\`e}res, Laurence and Jones, David T W and Pajtler, Kristian W and Morrissy, A Sorana and Kool, Marcel and Sturm, Dominik and Chavez, Lukas and Ernst, Aurelie and Brabetz, Sebastian and Hain, Michael and Zichner, Thomas and Segura-Wang, Maia and Weischenfeldt, Joachim and Rausch, Tobias and Mardin, Balca R and Zhou, Xin and Baciu, Cristina and Lawerenz, Christian and Chan, Jennifer A and Varlet, Pascale and Guerrini-Rousseau, Lea and Fults, Daniel W and Grajkowska, Wiesława and Hauser, Peter and Jabado, Nada and Ra, Young-Shin and Zitterbart, Karel and Shringarpure, Suyash S and De La Vega, Francisco M and Bustamante, Carlos D and Ng, Ho-Keung and Perry, Arie and MacDonald, Tobey J and Driever, Pablo Hern{\´a}iz and Bendel, Anne E and Bowers, Daniel C and McCowage, Geoffrey and Chintagumpala, Murali M and Cohn, Richard and Hassall, Timothy and Fleischhack, Gudrun and Eggen, Tone and Wesenberg, Finn and Feychting, Maria and Lannering, Birgitta and Sch{\"u}z, Joachim and Johansen, Christoffer and Andersen, Tina V and R{\"o}{\"o}sli, Martin and Kuehni, Claudia E and Grotzer, Michael and Kjaerheim, Kristina and Monoranu, Camelia M and Archer, Tenley C and Duke, Elizabeth and Pomeroy, Scott L and Shelagh, Redmond and Frank, Stephan and Sumerauer, David and Scheurlen, Wolfram and Ryzhova, Marina V and Milde, Till and Kratz, Christian P and Samuel, David and Zhang, Jinghui and Solomon, David A and Marra, Marco and Eils, Roland and Bartram, Claus R and von Hoff, Katja and Rutkowksi, Stefan and Ramaswamy, Vijay and Gilbertson, Richard J and Korshunov, Andrey and Taylor, Michael D and Lichter, Peter and Malkin, David and Gajjar, Amar and Korbel, Jan O and Pfister, Stefan M}, title = {Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort}, series = {The Lancet Oncology}, volume = {19}, journal = {The Lancet Oncology}, doi = {10.1016/S1470-2045(18)30242-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233425}, pages = {785-798}, year = {2018}, abstract = {Background Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. Methods In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. Findings We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6\% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20\% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5\% of medulloblastoma diagnoses, with the highest prevalence [14\%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71\%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57\%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52\% (95\% CI 40-69) and 5-year overall survival was 65\% (95\% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. Interpretation Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics.}, language = {en} } @article{SpenstYoungWasielewskietal.2016, author = {Spenst, Peter and Young, Ryan M. and Wasielewski, Michael R. and W{\"u}rthner, Frank}, title = {Guest and solvent modulated photo-driven charge separation and triplet generation in a perylene bisimide cyclophane}, series = {Chemical Science}, volume = {7}, journal = {Chemical Science}, number = {8}, doi = {10.1039/c6sc01574c}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191252}, pages = {5428-5434}, year = {2016}, abstract = {Cofacial positioning of two perylene bisimide (PBI) chromophores at a distance of 6.5 angstrom in a cyclophane structure prohibits the otherwise common excimer formation and directs photoexcited singlet state relaxation towards intramolecular symmetry-breaking charge separation (τ\(_{CS}\) = 161 +/- 4 ps) in polar CH\(_2\)Cl\(_2\), which is thermodynamically favored with a Gibbs free energy of ΔG\(_{CS}\) = -0.32 eV. The charges then recombine slowly in τ\(_{CR}\) = 8.90 +/- 0.06 ns to form the PBI triplet excited state, which can be used subsequently to generate singlet oxygen in 27\% quantum yield. This sequence of events is eliminated by dissolving the PBI cyclophane in non-polar toluene, where only excited singlet state decay occurs. In contrast, complexation of electron-rich aromatic hydrocarbons by the host PBI cyclophane followed by photoexcitation of PBI results in ultrafast electron transfer (<10 ps) from the guest to the PBI in CH\(_2\)Cl\(_2\). The rate constants for charge separation and recombination increase as the guest molecules become easier to oxidize, demonstrating that charge separation occurs close to the peak of the Marcus curve and the recombination lies far into the Marcus inverted region.}, language = {en} } @article{NiemannHuberWagneretal.2014, author = {Niemann, Axel and Huber, Nina and Wagner, Konstanze M. and Somandin, Christian and Horn, Michael and Lebrun-Julien, Fr{\´e}d{\´e}ric and Angst, Brigitte and Pereira, Jorge A. and Halfter, Hartmut and Welzl, Hans and Feltri, M. Laura and Wrabetz, Lawrence and Young, Peter and Wessig, Carsten and Toyka, Klaus V. and Suter, Ueli}, title = {The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease}, series = {Brain}, volume = {137}, journal = {Brain}, number = {3}, doi = {10.1093/brain/awt371}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120731}, pages = {668-82}, year = {2014}, abstract = {The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot-Marie-Tooth disease. We found that Gdap1 knockout mice (\(Gdap1^{-/-}\)), mimicking genetic alterations of patients suffering from severe forms of Charcot-Marie-Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria of peripheral neurons are larger in \(Gdap1^{-/-}\) mice and mitochondrial transport is impaired in cultured sensory neurons of \(Gdap1^{-/-}\) mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochondrial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system but not in the central nervous system of \(Gdap1^{-/-}\) mice compared with control littermates. In search for a molecular mechanism we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1 responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more GDAP1L1 was associated with mitochondria in the spinal cord of aged \(Gdap1^{-/-}\) mice compared with controls. Our findings demonstrate that Charcot-Marie-Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized glutathione.}, language = {en} } @article{MarenholzEsparzaGordilloRueschendorfetal.2015, author = {Marenholz, Ingo and Esparza-Gordillo, Jorge and R{\"u}schendorf, Franz and Bauerfeind, Anja and Strachan, David P. and Spycher, Ben D. and Baurecht, Hansj{\"o}rg and Magaritte-Jeannin, Patricia and S{\"a}{\"a}f, Annika and Kerkhof, Marjan and Ege, Markus and Baltic, Svetlana and Matheson, Melanie C. and Li, Jin and Michel, Sven and Ang, Wei Q. and McArdle, Wendy and Arnold, Andreas and Homuth, Georg and Demenais, Florence and Bouzigon, Emmanuelle and S{\"o}derh{\"a}ll, Cilla and Pershagen, G{\"o}ran and de Jongste, Johan C. and Postma, Dirkje S. and Braun-Fahrl{\"a}nder, Charlotte and Horak, Elisabeth and Ogorodova, Ludmila M. and Puzyrev, Valery P. and Bragina, Elena Yu and Hudson, Thomas J. and Morin, Charles and Duffy, David L. and Marks, Guy B. and Robertson, Colin F. and Montgomery, Grant W. and Musk, Bill and Thompson, Philip J. and Martin, Nicholas G. and James, Alan and Sleiman, Patrick and Toskala, Elina and Rodriguez, Elke and F{\"o}lster-Holst, Regina and Franke, Andre and Lieb, Wolfgang and Gieger, Christian and Heinzmann, Andrea and Rietschel, Ernst and Keil, Thomas and Cichon, Sven and N{\"o}then, Markus M. and Pennel, Craig E. and Sly, Peter D. and Schmidt, Carsten O. and Matanovic, Anja and Schneider, Valentin and Heinig, Matthias and H{\"u}bner, Norbert and Holt, Patrick G. and Lau, Susanne and Kabesch, Michael and Weidinger, Stefan and Hakonarson, Hakon and Ferreira, Manuel A. R. and Laprise, Catherine and Freidin, Maxim B. and Genuneit, Jon and Koppelman, Gerard H. and Mel{\´e}n, Erik and Dizier, Marie-H{\´e}l{\`e}ne and Henderson, A. John and Lee, Young Ae}, title = {Meta-analysis identifies seven susceptibility loci involved in the atopic march}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8804}, doi = {10.1038/ncomms9804}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139835}, year = {2015}, abstract = {Eczema often precedes the development of asthma in a disease course called the 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P = 2.1 x 10(-8)) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P = 5.3 x 10(-9)). Additional susceptibility loci identified at genome-wide significance are FLG (1q21.3), IL4/KIF3A (5q31.1), AP5B1/OVOL1 (11q13.1), C11orf30/LRRC32 (11q13.5) and IKZF3 (17q21). We show that predominantly eczema loci increase the risk for the atopic march. Our findings suggest that eczema may play an important role in the development of asthma after eczema.}, language = {en} } @article{vanKoolwijkRamdasIkrametal.2012, author = {van Koolwijk, Leonieke M. E. and Ramdas, Wishal D. and Ikram, M. Kamran and Jansonius, Nomdo M. and Pasutto, Francesca and Hys, Pirro G. and Macgregor, Stuart and Janssen, Sarah F. and Hewitt, Alex W. and Viswanathan, Ananth C. and ten Brink, Jacoline B. and Hosseini, S. Mohsen and Amin, Najaf and Despriet, Dominiek D. G. and Willemse-Assink, Jacqueline J. M. and Kramer, Rogier and Rivadeneira, Fernando and Struchalin, Maksim and Aulchenko, Yurii S. and Weisschuh, Nicole and Zenkel, Matthias and Mardin, Christian Y. and Gramer, Eugen and Welge-L{\"u}ssen, Ulrich and Montgomery, Grant W. and Carbonaro, Francis and Young, Terri L. and Bellenguez, C{\´e}line and McGuffin, Peter and Foster, Paul J. and Topouzis, Fotis and Mitchell, Paul and Wang, Jie Jin and Wong, Tien Y. and Czudowska, Monika A. and Hofman, Albert and Uitterlinden, Andre G. and Wolfs, Roger C. W. and de Jong, Paulus T. V. M. and Oostra, Ben A. and Paterson, Andrew D. and Mackey, David A. and Bergen, Arthur A. B. and Reis, Andre and Hammond, Christopher J. and Vingerling, Johannes R. and Lemij, Hans G. and Klaver, Caroline C. W. and van Duijn, Cornelia M.}, title = {Common Genetic Determinants of Intraocular Pressure and Primary Open-Angle Glaucoma}, series = {PLoS Genetics}, volume = {8}, journal = {PLoS Genetics}, number = {5}, doi = {10.1371/journal.pgen.1002611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131378}, pages = {e1002611}, year = {2012}, abstract = {Intraocular pressure (IOP) is a highly heritable risk factor for primary open-angle glaucoma and is the only target for current glaucoma therapy. The genetic factors which determine IOP are largely unknown. We performed a genome-wide association study for IOP in 11,972 participants from 4 independent population-based studies in The Netherlands. We replicated our findings in 7,482 participants from 4 additional cohorts from the UK, Australia, Canada, and the Wellcome Trust Case-Control Consortium 2/Blue Mountains Eye Study. IOP was significantly associated with rs11656696, located in GAS7 at 17p13.1 (p = 1.4 x 10\(^{-8}\)), and with rs7555523, located in TMCO1 at 1q24.1 (p = 1.6 x 10\(^{-8}\)). In a meta-analysis of 4 case-control studies (total N = 1,432 glaucoma cases), both variants also showed evidence for association with glaucoma (p = 2.4 x 10\(^{-2}\) for rs11656696 and p = 9.1 x 10\(^{-4}\) for rs7555523). GAS7 and TMCO1 are highly expressed in the ciliary body and trabecular meshwork as well as in the lamina cribrosa, optic nerve, and retina. Both genes functionally interact with known glaucoma disease genes. These data suggest that we have identified two clinically relevant genes involved in IOP regulation.}, language = {en} } @article{HartmannsbergerDopplerStauberetal.2020, author = {Hartmannsberger, Beate and Doppler, Kathrin and Stauber, Julia and Schlotter-Weigel, Beate and Young, Peter and Sereda, Michael W. and Sommer, Claudia}, title = {Intraepidermal nerve fiber density as biomarker in Charcot-Marie-Tooth disease 1A}, series = {Brain Communications}, volume = {2}, journal = {Brain Communications}, number = {1}, doi = {10.1093/braincomms/fcaa012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229538}, year = {2020}, abstract = {Charcot-Marie-Tooth disease type 1A, caused by a duplication of the gene peripheral myelin protein 22 kDa, is the most frequent subtype of hereditary peripheral neuropathy with an estimated prevalence of 1:5000. Patients suffer from sensory deficits, muscle weakness and foot deformities. There is no treatment approved for this disease. Outcome measures in clinical trials were based mainly on clinical features but did not evaluate the actual nerve damage. In our case-control study, we aimed to provide objective and reproducible outcome measures for future clinical trials. We collected skin samples from 48 patients with Charcot-Marie-Tooth type 1A, 7 patients with chronic inflammatory demyelinating polyneuropathy, 16 patients with small fibre neuropathy and 45 healthy controls. To analyse skin innervation, 40-µm cryosections of glabrous skin taken from the lateral index finger were double-labelled by immunofluorescence. The disease severity of patients with Charcot-Marie-Tooth type 1A was assessed by the Charcot-Marie-Tooth neuropathy version 2 score, which ranged from 3 (mild) to 27 (severe) and correlated with age (P < 0.01, R = 0.4). Intraepidermal nerve fibre density was reduced in patients with Charcot-Marie-Tooth type 1A compared with the healthy control group (P < 0.01) and negatively correlated with disease severity (P < 0.05, R = -0.293). Meissner corpuscle (MC) density correlated negatively with age in patients with Charcot-Marie-Tooth type 1A (P < 0.01, R = -0.45) but not in healthy controls (P = 0.07, R = 0.28). The density of Merkel cells was reduced in patients with Charcot-Marie-Tooth type 1A compared with healthy controls (P < 0.05). Furthermore, in patients with Charcot-Marie-Tooth type 1A, the fraction of denervated Merkel cells was highly increased and correlated with age (P < 0.05, R = 0.37). Analysis of nodes of Ranvier revealed shortened paranodes and a reduced fraction of long nodes in patients compared with healthy controls (both P < 0.001). Langerhans cell density was increased in chronic inflammatory demyelinating polyneuropathy, but not different in Charcot-Marie-Tooth type 1A compared with healthy controls. Our data suggest that intraepidermal nerve fibre density might be used as an outcome measure in Charcot-Marie-Tooth type 1A disease, as it correlates with disease severity. The densities of Meissner corpuscles and Merkel cells might be an additional tool for the evaluation of the disease progression. Analysis of follow-up biopsies will clarify the effects of Charcot-Marie-Tooth type 1A disease progression on cutaneous innervation.}, language = {en} } @article{BurnsGoldsteinNewgreenetal.2016, author = {Burns, Alan J. and Goldstein, Allan M. and Newgreen, Donald F. and Stamp, Lincon and Sch{\"a}fer, Karl-Herbert and Metzger, Marco and Hotta, Ryo and Young, Heather M. and Andrews, Peter W. and Thapar, Nikhil and Belkind-Gerson, Jaime and Bondurand, Nadege and Bornstein, Joel C. and Chan, Wood Yee and Cheah, Kathryn and Gershon, Michael D. and Heuckeroth, Robert O. and Hofstra, Robert M.W. and Just, Lothar and Kapur, Raj P. and King, Sebastian K. and McCann, Conor J. and Nagy, Nandor and Ngan, Elly and Obermayr, Florian and Pachnis, Vassilis and Pasricha, Pankaj J. and Sham, Mai Har and Tam, Paul and Vanden Berghe, Pieter}, title = {White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies}, series = {Developmental Biology}, volume = {417}, journal = {Developmental Biology}, number = {2}, doi = {10.1016/j.ydbio.2016.04.001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187415}, pages = {229-251}, year = {2016}, abstract = {Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts' views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic.}, language = {en} }