@article{PostemaHoogmanAmbrosinoetal.2021, author = {Postema, Merel C. and Hoogman, Martine and Ambrosino, Sara and Asherson, Philip and Banaschewski, Tobias and Bandeira, Cibele E. and Baranov, Alexandr and Bau, Claiton H.D. and Baumeister, Sarah and Baur-Streubel, Ramona and Bellgrove, Mark A. and Biederman, Joseph and Bralten, Janita and Brandeis, Daniel and Brem, Silvia and Buitelaar, Jan K. and Busatto, Geraldo F. and Castellanos, Francisco X. and Cercignani, Mara and Chaim-Avancini, Tiffany M. and Chantiluke, Kaylita C. and Christakou, Anastasia and Coghill, David and Conzelmann, Annette and Cubillo, Ana I. and Cupertino, Renata B. and de Zeeuw, Patrick and Doyle, Alysa E. and Durston, Sarah and Earl, Eric A. and Epstein, Jeffery N. and Ethofer, Thomas and Fair, Damien A. and Fallgatter, Andreas J. and Faraone, Stephen V. and Frodl, Thomas and Gabel, Matt C. and Gogberashvili, Tinatin and Grevet, Eugenio H. and Haavik, Jan and Harrison, Neil A. and Hartman, Catharina A. and Heslenfeld, Dirk J. and Hoekstra, Pieter J. and Hohmann, Sarah and H{\o}vik, Marie F. and Jernigan, Terry L. and Kardatzki, Bernd and Karkashadze, Georgii and Kelly, Clare and Kohls, Gregor and Konrad, Kerstin and Kuntsi, Jonna and Lazaro, Luisa and Lera-Miguel, Sara and Lesch, Klaus-Peter and Louza, Mario R. and Lundervold, Astri J. and Malpas, Charles B and Mattos, Paulo and McCarthy, Hazel and Namazova-Baranova, Leyla and Nicolau, Rosa and Nigg, Joel T. and Novotny, Stephanie E. and Oberwelland Weiss, Eileen and O'Gorman Tuura, Ruth L. and Oosterlaan, Jaap and Oranje, Bob and Paloyelis, Yannis and Pauli, Paul and Picon, Felipe A. and Plessen, Kerstin J. and Ramos-Quiroga, J. Antoni and Reif, Andreas and Reneman, Liesbeth and Rosa, Pedro G.P. and Rubia, Katya and Schrantee, Anouk and Schweren, Lizanne J.S. and Seitz, Jochen and Shaw, Philip and Silk, Tim J. and Skokauskas, Norbert and Soliva Vila, Juan C. and Stevens, Michael C. and Sudre, Gustavo and Tamm, Leanne and Tovar-Moll, Fernanda and van Erp, Theo G.M. and Vance, Alasdair and Vilarroya, Oscar and Vives-Gilabert, Yolanda and von Polier, Georg G. and Walitza, Susanne and Yoncheva, Yuliya N. and Zanetti, Marcus V. and Ziegler, Georg C. and Glahn, David C. and Jahanshad, Neda and Medland, Sarah E. and Thompson, Paul M. and Fisher, Simon E. and Franke, Barbara and Francks, Clyde}, title = {Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets}, series = {Journal of Child Psychology and Psychiatry}, volume = {62}, journal = {Journal of Child Psychology and Psychiatry}, number = {10}, doi = {10.1111/jcpp.13396}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239968}, pages = {1202 -- 1219}, year = {2021}, abstract = {Objective Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. Methods We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. Results There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. Conclusion Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.}, language = {en} } @article{MarenholzEsparzaGordilloRueschendorfetal.2015, author = {Marenholz, Ingo and Esparza-Gordillo, Jorge and R{\"u}schendorf, Franz and Bauerfeind, Anja and Strachan, David P. and Spycher, Ben D. and Baurecht, Hansj{\"o}rg and Magaritte-Jeannin, Patricia and S{\"a}{\"a}f, Annika and Kerkhof, Marjan and Ege, Markus and Baltic, Svetlana and Matheson, Melanie C. and Li, Jin and Michel, Sven and Ang, Wei Q. and McArdle, Wendy and Arnold, Andreas and Homuth, Georg and Demenais, Florence and Bouzigon, Emmanuelle and S{\"o}derh{\"a}ll, Cilla and Pershagen, G{\"o}ran and de Jongste, Johan C. and Postma, Dirkje S. and Braun-Fahrl{\"a}nder, Charlotte and Horak, Elisabeth and Ogorodova, Ludmila M. and Puzyrev, Valery P. and Bragina, Elena Yu and Hudson, Thomas J. and Morin, Charles and Duffy, David L. and Marks, Guy B. and Robertson, Colin F. and Montgomery, Grant W. and Musk, Bill and Thompson, Philip J. and Martin, Nicholas G. and James, Alan and Sleiman, Patrick and Toskala, Elina and Rodriguez, Elke and F{\"o}lster-Holst, Regina and Franke, Andre and Lieb, Wolfgang and Gieger, Christian and Heinzmann, Andrea and Rietschel, Ernst and Keil, Thomas and Cichon, Sven and N{\"o}then, Markus M. and Pennel, Craig E. and Sly, Peter D. and Schmidt, Carsten O. and Matanovic, Anja and Schneider, Valentin and Heinig, Matthias and H{\"u}bner, Norbert and Holt, Patrick G. and Lau, Susanne and Kabesch, Michael and Weidinger, Stefan and Hakonarson, Hakon and Ferreira, Manuel A. R. and Laprise, Catherine and Freidin, Maxim B. and Genuneit, Jon and Koppelman, Gerard H. and Mel{\´e}n, Erik and Dizier, Marie-H{\´e}l{\`e}ne and Henderson, A. John and Lee, Young Ae}, title = {Meta-analysis identifies seven susceptibility loci involved in the atopic march}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8804}, doi = {10.1038/ncomms9804}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139835}, year = {2015}, abstract = {Eczema often precedes the development of asthma in a disease course called the 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P = 2.1 x 10(-8)) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P = 5.3 x 10(-9)). Additional susceptibility loci identified at genome-wide significance are FLG (1q21.3), IL4/KIF3A (5q31.1), AP5B1/OVOL1 (11q13.1), C11orf30/LRRC32 (11q13.5) and IKZF3 (17q21). We show that predominantly eczema loci increase the risk for the atopic march. Our findings suggest that eczema may play an important role in the development of asthma after eczema.}, language = {en} }