@article{WolfBrandstetterBeutnerHessetal.2020, author = {Wolf-Brandstetter, C and Beutner, R and Hess, R and Bierbaum, S and Wagner, K and Scharnweber, D and Gbureck, U and Moseke, C}, title = {Multifunctional calcium phosphate based coatings on titanium implants with integrated trace elements}, series = {Biomedical Materials}, volume = {15}, journal = {Biomedical Materials}, number = {2}, doi = {10.1088/1748-605X/ab5d7b}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254085}, year = {2020}, abstract = {For decades, the main focus of titanium implants developed to restore bone functionality was on improved osseointegration. Additional antimicrobial properties have now become desirable, due to the risk that rising antibiotic resistance poses for implant-associated infections. To this end, the trace elements of copper and zinc were integrated into calcium phosphate based coatings by electrochemically assisted deposition. In addition to their antimicrobial activity, zinc is reported to attract bone progenitor cells through chemotaxis and thus increase osteogenic differentiation, and copper to stimulate angiogenesis. Quantities of up to 68.9 ± 0.1 μg cm\(^{-2}\) of copper and 56.6 ± 0.4 μg cm\(^{-2}\) of zinc were deposited; co-deposition of both ions did not influence the amount of zinc but slightly increased the amount of copper in the coatings. The release of deposited copper and zinc species was negligible in serum-free simulated body fluid. In protein-containing solutions, a burst release of up to 10 μg ml\(^{-1}\) was observed for copper, while zinc was released continuously for up to 14 days. The presence of zinc was beneficial for adhesion and growth of human mesenchymal stromal cells in a concentration-dependent manner, but cytotoxic effects were already visible for coatings with an intermediate copper content. However, co-deposited zinc could somewhat alleviate the adverse effects of copper. Antimicrobial tests with E. coli revealed a decrease in adherent bacteria on brushite without copper or zinc of 60\%, but if the coating contained both ions there was almost no bacterial adhesion after 12 h. Coatings with high zinc content and intermediate copper content had the overall best multifunctional properties.}, language = {en} } @article{ElHelouBiegnerBodeetal.2019, author = {El-Helou, Sabine M. and Biegner, Anika-Kerstin and Bode, Sebastian and Ehl, Stephan R. and Heeg, Maximilian and Maccari, Maria E. and Ritterbusch, Henrike and Speckmann, Carsten and Rusch, Stephan and Scheible, Raphael and Warnatz, Klaus and Atschekzei, Faranaz and Beider, Renata and Ernst, Diana and Gerschmann, Stev and Jablonka, Alexandra and Mielke, Gudrun and Schmidt, Reinhold E. and Sch{\"u}rmann, Gesine and Sogkas, Georgios and Baumann, Ulrich H. and Klemann, Christian and Viemann, Dorothee and Bernuth, Horst von and Kr{\"u}ger, Renate and Hanitsch, Leif G. and Scheibenbogen, Carmen M. and Wittke, Kirsten and Albert, Michael H. and Eichinger, Anna and Hauck, Fabian and Klein, Christoph and Rack-Hoch, Anita and Sollinger, Franz M. and Avila, Anne and Borte, Michael and Borte, Stephan and Fasshauer, Maria and Hauenherm, Anja and Kellner, Nils and M{\"u}ller, Anna H. and {\"U}lzen, Anett and Bader, Peter and Bakhtiar, Shahrzad and Lee, Jae-Yun and Heß, Ursula and Schubert, Ralf and W{\"o}lke, Sandra and Zielen, Stefan and Ghosh, Sujal and Laws, Hans-Juergen and Neubert, Jennifer and Oommen, Prasad T. and H{\"o}nig, Manfred and Schulz, Ansgar and Steinmann, Sandra and Klaus, Schwarz and D{\"u}ckers, Gregor and Lamers, Beate and Langemeyer, Vanessa and Niehues, Tim and Shai, Sonu and Graf, Dagmar and M{\"u}glich, Carmen and Schmalzing, Marc T. and Schwaneck, Eva C. and Tony, Hans-Peter and Dirks, Johannes and Haase, Gabriele and Liese, Johannes G. and Morbach, Henner and Foell, Dirk and Hellige, Antje and Wittkowski, Helmut and Masjosthusmann, Katja and Mohr, Michael and Geberzahn, Linda and Hedrich, Christian M. and M{\"u}ller, Christiane and R{\"o}sen-Wolff, Angela and Roesler, Joachim and Zimmermann, Antje and Behrends, Uta and Rieber, Nikolaus and Schauer, Uwe and Handgretinger, Rupert and Holzer, Ursula and Henes, J{\"o}rg and Kanz, Lothar and Boesecke, Christoph and Rockstroh, J{\"u}rgen K. and Schwarze-Zander, Carolynne and Wasmuth, Jan-Christian and Dilloo, Dagmar and H{\"u}lsmann, Brigitte and Sch{\"o}nberger, Stefan and Schreiber, Stefan and Zeuner, Rainald and Ankermann, Tobias and Bismarck, Philipp von and Huppertz, Hans-Iko and Kaiser-Labusch, Petra and Greil, Johann and Jakoby, Donate and Kulozik, Andreas E. and Metzler, Markus and Naumann-Bartsch, Nora and Sobik, Bettina and Graf, Norbert and Heine, Sabine and Kobbe, Robin and Lehmberg, Kai and M{\"u}ller, Ingo and Herrmann, Friedrich and Horneff, Gerd and Klein, Ariane and Peitz, Joachim and Schmidt, Nadine and Bielack, Stefan and Groß-Wieltsch, Ute and Classen, Carl F. and Klasen, Jessica and Deutz, Peter and Kamitz, Dirk and Lassy, Lisa and Tenbrock, Klaus and Wagner, Norbert and Bernbeck, Benedikt and Brummel, Bastian and Lara-Villacanas, Eusebia and M{\"u}nstermann, Esther and Schneider, Dominik T. and Tietsch, Nadine and Westkemper, Marco and Weiß, Michael and Kramm, Christof and K{\"u}hnle, Ingrid and Kullmann, Silke and Girschick, Hermann and Specker, Christof and Vinnemeier-Laubenthal, Elisabeth and Haenicke, Henriette and Schulz, Claudia and Schweigerer, Lothar and M{\"u}ller, Thomas G. and Stiefel, Martina and Belohradsky, Bernd H. and Soetedjo, Veronika and Kindle, Gerhard and Grimbacher, Bodo}, title = {The German national registry of primary immunodeficiencies (2012-2017)}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2019.01272}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226629}, year = {2019}, abstract = {Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs. Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel. Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1-25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57\% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36\% of patients. Familial cases were observed in 21\% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0-88 years). Presenting symptoms comprised infections (74\%) and immune dysregulation (22\%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE-syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49\% of all patients received immunoglobulin G (IgG) substitution (70\%-subcutaneous; 29\%-intravenous; 1\%-unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy. Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment.}, language = {en} }