@article{HudsonNewboldContuetal.2014, author = {Hudson, Lawrence N. and Newbold, Tim and Contu, Sara and Hill, Samantha L. L. and Lysenko, Igor and De Palma, Adriana and Phillips, Helen R. P. and Senior, Rebecca A. and Bennett, Dominic J. and Booth, Hollie and Choimes, Argyrios and Correia, David L. P. and Day, Julie and Echeverria-Londono, Susy and Garon, Morgan and Harrison, Michelle L. K. and Ingram, Daniel J. and Jung, Martin and Kemp, Victoria and Kirkpatrick, Lucinda and Martin, Callum D. and Pan, Yuan and White, Hannah J. and Aben, Job and Abrahamczyk, Stefan and Adum, Gilbert B. and Aguilar-Barquero, Virginia and Aizen, Marcelo and Ancrenaz, Marc and Arbelaez-Cortes, Enrique and Armbrecht, Inge and Azhar, Badrul and Azpiroz, Adrian B. and Baeten, Lander and B{\´a}ldi, Andr{\´a}s and Banks, John E. and Barlow, Jos and Bat{\´a}ry, P{\´e}ter and Bates, Adam J. and Bayne, Erin M. and Beja, Pedro and Berg, Ake and Berry, Nicholas J. and Bicknell, Jake E. and Bihn, Jochen H. and B{\"o}hning-Gaese, Katrin and Boekhout, Teun and Boutin, Celine and Bouyer, Jeremy and Brearley, Francis Q. and Brito, Isabel and Brunet, J{\"o}rg and Buczkowski, Grzegorz and Buscardo, Erika and Cabra-Garcia, Jimmy and Calvino-Cancela, Maria and Cameron, Sydney A. and Cancello, Eliana M. and Carrijo, Tiago F. and Carvalho, Anelena L. and Castro, Helena and Castro-Luna, Alejandro A. and Cerda, Rolando and Cerezo, Alexis and Chauvat, Matthieu and Clarke, Frank M. and Cleary, Daniel F. R. and Connop, Stuart P. and D'Aniello, Biagio and da Silva, Pedro Giovani and Darvill, Ben and Dauber, Jens and Dejean, Alain and Diek{\"o}tter, Tim and Dominguez-Haydar, Yamileth and Dormann, Carsten F. and Dumont, Bertrand and Dures, Simon G. and Dynesius, Mats and Edenius, Lars and Elek, Zolt{\´a}n and Entling, Martin H. and Farwig, Nina and Fayle, Tom M. and Felicioli, Antonio and Felton, Annika M. and Ficetola, Gentile F. and Filgueiras, Bruno K. C. and Fonte, Steve J. and Fraser, Lauchlan H. and Fukuda, Daisuke and Furlani, Dario and Ganzhorn, J{\"o}rg U. and Garden, Jenni G. and Gheler-Costa, Carla and Giordani, Paolo and Giordano, Simonetta and Gottschalk, Marco S. and Goulson, Dave and Gove, Aaron D. and Grogan, James and Hanley, Mick E. and Hanson, Thor and Hashim, Nor R. and Hawes, Joseph E. and H{\´e}bert, Christian and Helden, Alvin J. and Henden, John-Andr{\´e} and Hern{\´a}ndez, Lionel and Herzog, Felix and Higuera-Diaz, Diego and Hilje, Branko and Horgan, Finbarr G. and Horv{\´a}th, Roland and Hylander, Kristoffer and Horv{\´a}th, Roland and Isaacs-Cubides, Paola and Ishitani, Mashiro and Jacobs, Carmen T. and Jaramillo, Victor J. and Jauker, Birgit and Jonsell, Matts and Jung, Thomas S. and Kapoor, Vena and Kati, Vassiliki and Katovai, Eric and Kessler, Michael and Knop, Eva and Kolb, Annette and K{\"o}r{\"o}si, {\`A}d{\´a}m and Lachat, Thibault and Lantschner, Victoria and Le F{\´e}on, Violette and LeBuhn, Gretchen and L{\´e}gar{\´e}, Jean-Philippe and Letcher, Susan G. and Littlewood, Nick A. and L{\´o}pez-Quintero, Carlos A. and Louhaichi, Mounir and L{\"o}vei, Gabor L. and Lucas-Borja, Manuel Esteban and Luja, Victor H. and Maeto, Kaoru and Magura, Tibor and Mallari, Neil Aldrin and Marin-Spiotta, Erika and Marhall, E. J. P. and Mart{\´i}nez, Eliana and Mayfield, Margaret M. and Mikusinski, Gregorz and Milder, Jeffery C. and Miller, James R. and Morales, Carolina L. and Muchane, Mary N. and Muchane, Muchai and Naidoo, Robin and Nakamura, Akihiro and Naoe, Shoji and Nates-Parra, Guiomar and Navarerete Gutierrez, Dario A. and Neuschulz, Eike L. and Noreika, Norbertas and Norfolk, Olivia and Noriega, Jorge Ari and N{\"o}ske, Nicole M. and O'Dea, Niall and Oduro, William and Ofori-Boateng, Caleb and Oke, Chris O. and Osgathorpe, Lynne M. and Paritsis, Juan and Parrah, Alejandro and Pelegrin, Nicol{\´a}s and Peres, Carlos A. and Persson, Anna S. and Petanidou, Theodora and Phalan, Ben and Philips, T. Keith and Poveda, Katja and Power, Eileen F. and Presley, Steven J. and Proen{\c{c}}a, V{\^a}nia and Quaranta, Marino and Quintero, Carolina and Redpath-Downing, Nicola A. and Reid, J. Leighton and Reis, Yana T. and Ribeiro, Danilo B. and Richardson, Barbara A. and Richardson, Michael J. and Robles, Carolina A. and R{\"o}mbke, J{\"o}rg and Romero-Duque, Luz Piedad and Rosselli, Loreta and Rossiter, Stephen J. and Roulston, T'ai H. and Rousseau, Laurent and Sadler, Jonathan P. and S{\´a}fi{\´a}n, Szbolcs and Salda{\~n}a-V{\´a}squez, Romeo A. and Samneg{\aa}rd, Ulrika and Sch{\"u}epp, Christof and Schweiger, Oliver and Sedlock, Jodi L. and Shahabuddin, Ghazala and Sheil, Douglas and Silva, Fernando A. B. and Slade, Eleanor and Smith-Pardo, Allan H. and Sodhi, Navjot S. and Somarriba, Eduardo J. and Sosa, Ram{\´o}n A. and Stout, Jane C. and Struebig, Matthew J. and Sung, Yik-Hei and Threlfall, Caragh G. and Tonietto, Rebecca and T{\´o}thm{\´e}r{\´e}sz, B{\´e}la and Tscharntke, Teja and Turner, Edgar C. and Tylianakis, Jason M. and Vanbergen, Adam J. and Vassilev, Kiril and Verboven, Hans A. F. and Vergara, Carlos H. and Vergara, Pablo M. and Verhulst, Jort and Walker, Tony R. and Wang, Yanping and Watling, James I. and Wells, Konstans and Williams, Christopher D. and Willig, Michael R. and Woinarski, John C. Z. and Wolf, Jan H. D. and Woodcock, Ben A. and Yu, Douglas W. and Zailsev, Andreys and Collen, Ben and Ewers, Rob M. and Mace, Georgina M. and Purves, Drew W. and Scharlemann, J{\"o}rn P. W. and Pervis, Andy}, title = {The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts}, series = {Ecology and Evolution}, volume = {4}, journal = {Ecology and Evolution}, number = {24}, doi = {10.1002/ece3.1303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114425}, pages = {4701 - 4735}, year = {2014}, abstract = {Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1\% of the total number of all species described, and more than 1\% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.}, language = {en} } @article{MencacciIsaiasReichetal.2014, author = {Mencacci, Niccol{\´o} E. and Isaias, Ioannis U. and Reich, Martin M. and Ganos, Christos and Plagnol, Vincent and Polke, James M. and Bras, Jose and Hersheson, Joshua and Stamelou, Maria and Pittman, Alan M. and Noyce, Alastair J. and Mok, Kin Y. and Opladen, Thomas and Kunstmann, Erdmute and Hodecker, Sybille and M{\"u}nchau, Alexander and Volkmann, Jens and Samnick, Samuel and Sidle, Katie and Nanji, Tina and Sweeney, Mary G. and Houlden, Henry and Batla, Amit and Zecchinelli, Anna L. and Pezzoli, Gianni and Marotta, Giorgio and Lees, Andrew and Alegria, Paulo and Krack, Paul and Cormier-Dequaire, Florence and Lesage, Suzanne and Brice, Alexis and Heutink, Peter and Gasser, Thomas and Lubbe, Steven J. and Morris, Huw R. and Taba, Pille and Koks, Sulev and Majounie, Elisa and Gibbs, J. Raphael and Singleton, Andrew and Hardy, John and Klebe, Stephan and Bhatia, Kailash P. and Wood, Nicholas W.}, title = {Parkinson's disease in GTP cyclohydrolase 1 mutation carriers}, series = {Brain}, volume = {137}, journal = {Brain}, number = {9}, doi = {10.1093/brain/awu179}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121268}, pages = {2480-92}, year = {2014}, abstract = {GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([(123)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedigrees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson's disease-like nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contribute to the risk of developing Parkinson's disease, even in the absence of a family history for DOPA-responsive dystonia. The frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson's disease and 5935 control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I, K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V). The frequency of GCH1 variants was significantly higher (Fisher's exact test P-value 0.0001) in cases (10/1318 = 0.75\%) than in controls (6/5935 = 0.1\%; odds ratio 7.5; 95\% confidence interval 2.4-25.3). Our results show that rare GCH1 variants are associated with an increased risk for Parkinson's disease. These findings expand the clinical and biological relevance of GTP cycloydrolase 1 deficiency, suggesting that it not only leads to biochemical striatal dopamine depletion and DOPA-responsive dystonia, but also predisposes to nigrostriatal cell loss. Further insight into GCH1-associated pathogenetic mechanisms will shed light on the role of dopamine metabolism in nigral degeneration and Parkinson's disease.}, language = {en} }