@article{KadeBakirciTandonetal.2022, author = {Kade, Juliane C. and Bakirci, Ezgi and Tandon, Biranche and Gorgol, Danila and Mrlik, Miroslav and Luxenhofer, Robert and Dalton, Paul D.}, title = {The Impact of Including Carbonyl Iron Particles on the Melt Electrowriting Process}, series = {Macromolecular Materials and Engineering}, volume = {307}, journal = {Macromolecular Materials and Engineering}, number = {12}, issn = {1438-7492}, doi = {10.1002/mame.202200478}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318482}, year = {2022}, abstract = {Melt electrowriting, a high-resolution additive manufacturing technique, is used in this study to process a magnetic polymer-based blend for the first time. Carbonyl iron (CI) particles homogenously distribute into poly(vinylidene fluoride) (PVDF) melts to result in well-defined, highly porous structures or scaffolds comprised of fibers ranging from 30 to 50 µm in diameter. This study observes that CI particle incorporation is possible up to 30 wt\% without nozzle clogging, albeit that the highest concentration results in heterogeneous fiber morphologies. In contrast, the direct writing of homogeneous PVDF fibers with up to 15 wt\% CI is possible. The fibers can be readily displaced using magnets at concentrations of 1 wt\% and above. Combined with good viability of L929 CC1 cells using Live/Dead imaging on scaffolds for all CI concentrations indicates that these formulations have potential for the usage in stimuli-responsive applications such as 4D printing.}, language = {en} }