@article{TheinBondeBunikisetal.2012, author = {Thein, Marcus and Bonde, Mari and Bunikis, Ignas and Denker, Katrin and Sickmann, Albert and Bergstr{\"o}m, Sven and Benz, Roland}, title = {DipA, a Pore-Forming Protein in the Outer Membrane of Lyme Disease Spirochetes Exhibits Specificity for the Permeation of Dicarboxylates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75809}, year = {2012}, abstract = {Lyme disease Borreliae are highly dependent on the uptake of nutrients provided by their hosts. Our study describes the identification of a 36 kDa protein that functions as putative dicarboxylate-specific porin in the outer membrane of Lyme disease Borrelia. The protein was purified by hydroxyapatite chromatography from Borrelia burgdorferi B31 and designated as DipA, for dicarboxylate-specific porin A. DipA was partially sequenced, and corresponding genes were identified in the genomes of B. burgdorferi B31, Borrelia garinii PBi and Borrelia afzelii PKo. DipA exhibits high homology to the Oms38 porins of relapsing fever Borreliae. B. burgdorferi DipA was characterized using the black lipid bilayer assay. The protein has a singlechannel conductance of 50 pS in 1 M KCl, is slightly selective for anions with a permeability ratio for cations over anions of 0.57 in KCl and is not voltage-dependent. The channel could be partly blocked by different di- and tricarboxylic anions. Particular high stability constants up to about 28,000 l/mol (in 0.1 M KCl) were obtained among the 11 tested anions for oxaloacetate, 2-oxoglutarate and citrate. The results imply that DipA forms a porin specific for dicarboxylates which may play an important role for the uptake of specific nutrients in different Borrelia species.}, subject = {Medizin}, language = {en} } @article{BeitzingerBronnhuberDuschaetal.2013, author = {Beitzinger, Christoph and Bronnhuber, Annika and Duscha, Kerstin and Riedl, Zsuzsanna and Huber-Lang, Markus and Benz, Roland and Hajos, Gy{\"o}rgy and Barth, Holger}, title = {Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0066099}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130097}, pages = {e66099}, year = {2013}, abstract = {Background Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric \(PA_{63}\) binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the \(PA_{63}\)-channel in a dose dependent way. Methodology/Principal Findings Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the \(PA_{63}\)-channel in the µM range, when both, inhibitor and \(PA_{63}\) are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of \(PA_{63}\)-channel function also efficiently block intoxication of the cells by the combination lethal factor and \(PA_{63}\) in the same concentration range as they block the channels in vitro. Conclusions/Significance These results strongly argue in favor of a transport of lethal factor through the \(PA_{63}\)-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax.}, language = {en} } @article{AngelikaRolandoBeitzingeretal.2011, author = {Angelika, Kronhardt and Rolando, Monica and Beitzinger, Christoph and Stefani, Caroline and Leuber, Michael and Flatau, Gilles and Popoff, Michel R. and Benz, Roland and Lemichez, Emmanuel}, title = {Cross-Reactivity of Anthrax and C2 Toxin: Protective Antigen Promotes the Uptake of Botulinum C2I Toxin into Human Endothelial Cells}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0023133}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134791}, pages = {e23133}, year = {2011}, abstract = {Binary toxins are among the most potent bacterial protein toxins performing a cooperative mode of translocation and exhibit fatal enzymatic activities in eukaryotic cells. Anthrax and C2 toxin are the most prominent examples for the AB(7/8) type of toxins. The B subunits bind both host cell receptors and the enzymatic A polypeptides to trigger their internalization and translocation into the host cell cytosol. C2 toxin is composed of an actin ADP-ribosyltransferase (C2I) and C2II binding subunits. Anthrax toxin is composed of adenylate cyclase (EF) and MAPKK protease (LF) enzymatic components associated to protective antigen (PA) binding subunit. The binding and translocation components anthrax protective antigen (PA(63)) and C2II of C2 toxin share a sequence homology of about 35\%, suggesting that they might substitute for each other. Here we show by conducting in vitro measurements that PA(63) binds C2I and that C2II can bind both EF and LF. Anthrax edema factor (EF) and lethal factor (LF) have higher affinities to bind to channels formed by C2II than C2 toxin's C2I binds to anthrax protective antigen (PA(63)). Furthermore, we could demonstrate that PA in high concentration has the ability to transport the enzymatic moiety C2I into target cells, causing actin modification and cell rounding. In contrast, C2II does not show significant capacity to promote cell intoxication by EF and LF. Together, our data unveiled the remarkable flexibility of PA in promoting C2I heterologous polypeptide translocation into cells.}, language = {de} } @article{AbdaliBarthNorouzyetal.2013, author = {Abdali, Narges and Barth, Enrico and Norouzy, Amir and Schulz, Robert and Nau, Werner M. and Kleinekathofer, Ulrich and Tauch, Andreas and Benz, Roland}, title = {Corynebacterium jeikeium jk0268 Constitutes for the 40 Amino Acid Long PorACj, Which Forms a Homooligomeric and Anion- Selective Cell Wall Channel}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {10}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129989}, pages = {e75651}, year = {2013}, abstract = {Corynebacterium jeikeium, a resident of human skin, is often associated with multidrug resistant nosocomial infections in immunodepressed patients. C. jeikeium K411 belongs to mycolic acid-containing actinomycetes, the mycolata and contains a channel-forming protein as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent treated cell walls and in extracts of whole cells using organic solvents. A gene coding for a 40 amino acid long polypeptide possibly responsible for the pore-forming activity was identified in the known genome of C. jeikeium by its similar chromosomal localization to known porH and porA genes of other Corynebacterium strains. The gene jk0268 was expressed in a porin deficient Corynebacterium glutamicum strain. For purification temporarily histidine-tailed or with a GST-tag at the N-terminus, the homogeneous protein caused channel-forming activity with an average conductance of 1.25 nS in 1M KCl identical to the channels formed by the detergent extracts. Zero-current membrane potential measurements of the voltage dependent channel implied selectivity for anions. This preference is according to single-channel analysis caused by some excess of cationic charges located in the channel lumen formed by oligomeric alpha-helical wheels. The channel has a suggested diameter of 1.4 nm as judged from the permeability of different sized hydrated anions using the Renkin correction factor. Surprisingly, the genome of C. jeikeium contained only one gene coding for a cell wall channel of the PorA/PorH type found in other Corynebacterium species. The possible evolutionary relationship between the heterooligomeric channels formed by certain Corynebacterium strains and the homooligomeric pore of C. jeikeium is discussed.}, language = {en} } @article{KronhardtBeitzingerBarthetal.2016, author = {Kronhardt, Angelika and Beitzinger, Christoph and Barth, Holger and Benz, Roland}, title = {Chloroquine Analog Interaction with C2-and Iota-Toxin in Vitro and in Living Cells}, series = {Toxins}, volume = {8}, journal = {Toxins}, number = {8}, doi = {10.3390/toxins8080237}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168286}, pages = {237}, year = {2016}, abstract = {C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the target cells. The enzymatic subunits are in both cases actin ADP-ribosyltransferases that modify R177 of globular actin finally leading to cell death. Following their binding to host cells' receptors and internalization, the two binding components form heptameric channels in endosomal membranes which mediate the translocation of the enzymatic components Iota a and C2I from endosomes into the cytosol of the target cells. The binding components form ion-permeable channels in artificial and biological membranes. Chloroquine and related 4-aminoquinolines were able to block channel formation in vitro and intoxication of living cells. In this study, we extended our previous work to the use of different chloroquine analogs and demonstrate that positively charged aminoquinolinium salts are able to block channels formed in lipid bilayer membranes by the binding components of C2- and Iota-toxin. Similarly, these molecules protect cultured mammalian cells from intoxication with C2- and Iota-toxin. The aminoquinolinium salts did presumably not interfere with actin ADP-ribosylation or receptor binding but blocked the pores formed by C2IIa and Iota b in living cells and in vitro. The blocking efficiency of pores formed by Iota b and C2IIa by the chloroquine analogs showed interesting differences indicating structural variations between the types of protein-conducting nanochannels formed by Iota b and C2IIa.}, language = {en} } @article{FoertschHuppMaetal.2011, author = {F{\"o}rtsch, Christina and Hupp, Sabrina and Ma, Jiangtao and Mitchell, Timothy J. and Maier, Elke and Benz, Roland and Iliev, Asparouh I.}, title = {Changes in Astrocyte Shape Induced by Sublytic Concentrations of the Cholesterol-Dependent Cytolysin Pneumolysin Still Require Pore-Forming Capacity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69084}, year = {2011}, abstract = {Streptococcus pneumoniae is a common pathogen that causes various infections, such as sepsis and meningitis. A major pathogenic factor of S. pneumoniae is the cholesterol-dependent cytolysin, pneumolysin. It produces cell lysis at high concentrations and apoptosis at lower concentrations. We have shown that sublytic amounts of pneumolysin induce small GTPase-dependent actin cytoskeleton reorganization and microtubule stabilization in human neuroblastoma cells that are manifested by cell retraction and changes in cell shape. In this study, we utilized a live imaging approach to analyze the role of pneumolysin's pore-forming capacity in the actin-dependent cell shape changes in primary astrocytes. After the initial challenge with the wild-type toxin, a permeabilized cell population was rapidly established within 20-40 minutes. After the initial rapid permeabilization, the size of the permeabilized population remained unchanged and reached a plateau. Thus, we analyzed the non-permeabilized (non-lytic) population, which demonstrated retraction and shape changes that were inhibited by actin depolymerization. Despite the non-lytic nature of pneumolysin treatment, the toxin's lytic capacity remained critical for the initiation of cell shape changes. The non-lytic pneumolysin mutants W433F-pneumolysin and delta6-pneumolysin, which bind the cell membrane with affinities similar to that of the wild-type toxin, were not able to induce shape changes. The initiation of cell shape changes and cell retraction by the wild-type toxin were independent of calcium and sodium influx and membrane depolarization, which are known to occur following cellular challenge and suggested to result from the ion channel-like properties of the pneumolysin pores. Excluding the major pore-related phenomena as the initiation mechanism of cell shape changes, the existence of a more complex relationship between the pore-forming capacity of pneumolysin and the actin cytoskeleton reorganization is suggested.}, subject = {Toxikologie}, language = {en} }