@article{HesbacherPfitzerWiedorferetal.2016, author = {Hesbacher, Sonja and Pfitzer, Lisa and Wiedorfer, Katharina and Angermeyer, Sabrina and Borst, Andreas and Haferkamp, Sebastian and Scholz, Claus-J{\"u}rgen and Wobser, Marion and Schrama, David and Houben, Roland}, title = {RB1 is the crucial target of the Merkel cell polyomavirus Large T antigen in Merkel cell carcinoma cells}, series = {Oncotarget}, volume = {7}, journal = {Oncotarget}, number = {22}, doi = {10.18632/oncotarget.8793}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177858}, pages = {32956-32968}, year = {2016}, abstract = {The pocket protein (PP) family consists of the three members RB1, p107 and p130 all possessing tumor suppressive properties. Indeed, the PPs jointly control the G1/S transition mainly by inhibiting E2F transcription factors. Notably, several viral oncoproteins are capable of binding and inhibiting PPs. Merkel cell polyomavirus (MCPyV) is considered as etiological factor for Merkel cell carcinoma (MCC) with expression of the viral Large T antigen (LT) harboring an intact PP binding domain being required for proliferation of most MCC cells. Therefore, we analyzed the interaction of MCPyV-LT with the PPs. Co-IP experiments indicate that MCPyV-LT binds potently only to RB1. Moreover, MCPyV-LT knockdown-induced growth arrest in MCC cells can be rescued by knockdown of RB1, but not by p107 or p130 knockdown. Accordingly, cell cycle arrest and E2F target gene repression mediated by the single PPs can only in the case of RB1 be significantly reverted by MCPyV-LT expression. Moreover, data from an MCC patient indicate that loss of RB1 rendered the MCPyV-positive MCC cells LT independent. Thus, our results suggest that RB1 is the dominant tumor suppressor PP in MCC, and that inactivation of RB1 by MCPyV-LT is largely sufficient for its growth supporting function in established MCPyV-positive MCC cells.}, language = {en} } @article{HoubenHesbacherSchmidetal.2011, author = {Houben, Roland and Hesbacher, Sonja and Schmid, Corinna P. and Kauczok, Claudia S. and Flohr, Ulrike and Haferkamp, Sebastian and M{\"u}ller, Cornelia S. L. and Schrama, David and Wischhusen, J{\"o}rg and Becker, J{\"u}rgen C.}, title = {High-Level Expression of Wild-Type p53 in Melanoma Cells is Frequently Associated with Inactivity in p53 Reporter Gene Assays}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69012}, year = {2011}, abstract = {Background: Inactivation of the p53 pathway that controls cell cycle progression, apoptosis and senescence, has been proposed to occur in virtually all human tumors and p53 is the protein most frequently mutated in human cancer. However, the mutational status of p53 in melanoma is still controversial; to clarify this notion we analysed the largest series of melanoma samples reported to date. Methodology/Principal Findings: Immunohistochemical analysis of more than 180 melanoma specimens demonstrated that high levels of p53 are expressed in the vast majority of cases. Subsequent sequencing of the p53 exons 5-8, however, revealed only in one case the presence of a mutation. Nevertheless, by means of two different p53 reporter constructs we demonstrate transcriptional inactivity of wild type p53 in 6 out of 10 melanoma cell lines; the 4 other p53 wild type melanoma cell lines exhibit p53 reporter gene activity, which can be blocked by shRNA knock down of p53. Conclusions/Significance: In melanomas expressing high levels of wild type p53 this tumor suppressor is frequently inactivated at transcriptional level.}, subject = {Krebs }, language = {en} } @article{HafnerHoubenBaeurleetal.2012, author = {Hafner, Christian and Houben, Roland and Baeurle, Anne and Ritter, Cathrin and Schrama, David and Landthaler, Michael and Becker, J{\"u}rgen C.}, title = {Activation of the PI3K/AKT Pathway in Merkel Cell Carcinoma}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {2}, doi = {10.1371/journal.pone.0031255}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131398}, pages = {e31255}, year = {2012}, abstract = {Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with an increasing incidence. The understanding of the molecular carcinogenesis of MCC is limited. Here, we scrutinized the PI3K/AKT pathway, one of the major pathways activated in human cancer, in MCC. Immunohistochemical analysis of 41 tumor tissues and 9 MCC cell lines revealed high levels of AKT phosphorylation at threonine 308 in 88\% of samples. Notably, the AKT phosphorylation was not correlated with the presence or absence of the Merkel cell polyoma virus (MCV). Accordingly, knock-down of the large and small T antigen by shRNA in MCV positive MCC cells did not affect phosphorylation of AKT. We also analyzed 46 MCC samples for activating PIK3CA and AKT1 mutations. Oncogenic PIK3CA mutations were found in 2/46 (4\%) MCCs whereas mutations in exon 4 of AKT1 were absent. MCC cell lines demonstrated a high sensitivity towards the PI3K inhibitor LY-294002. This finding together with our observation that the PI3K/AKT pathway is activated in the majority of human MCCs identifies PI3K/AKT as a potential new therapeutic target for MCC patients.}, language = {en} } @article{AdamBaeurleBrodskyetal.2014, author = {Adam, Christian and Baeurle, Anne and Brodsky, Jeffrey L. and Schrama, David and Wipf, Peter and Becker, J{\"u}rgen Christian and Houben, Roland}, title = {The HSP70 Modulator MAL3-101 Inhibits Merkel Cell Carcinoma}, doi = {10.1371/journal.pone.0092041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112795}, year = {2014}, abstract = {Merkel Cell Carcinoma (MCC) is a rare and highly aggressive neuroendocrine skin cancer for which no effective treatment is available. MCC represents a human cancer with the best experimental evidence for a causal role of a polyoma virus. Large T antigens (LTA) encoded by polyoma viruses are oncoproteins, which are thought to require support of cellular heat shock protein 70 (HSP70) to exert their transforming activity. Here we evaluated the capability of MAL3-101, a synthetic HSP70 inhibitor, to limit proliferation and survival of various MCC cell lines. Remarkably, MAL3-101 treatment resulted in considerable apoptosis in 5 out of 7 MCC cell lines. While this effect was not associated with the viral status of the MCC cells, quantitative mRNA expression analysis of the known HSP70 isoforms revealed a significant correlation between MAL3-101 sensitivity and HSC70 expression, the most prominent isoform in all cell lines. Moreover, MAL3-101 also exhibited in vivo antitumor activity in an MCC xenograft model suggesting that this substance or related compounds are potential therapeutics for the treatment of MCC in the future.}, language = {en} } @article{SarmaWillmesAngereretal.2020, author = {Sarma, Bhavishya and Willmes, Christoph and Angerer, Laura and Adam, Christian and Becker, J{\"u}rgen C. and Kervarrec, Thibault and Schrama, David and Houben, Roland}, title = {Artesunate affects T antigen expression and survival of virus-positive Merkel cell carcinoma}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {4}, issn = {2072-6694}, doi = {10.3390/cancers12040919}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203851}, year = {2020}, abstract = {Merkel cell carcinoma (MCC) is a rare and highly aggressive skin cancer with frequent viral etiology. Indeed, in about 80\% of cases, there is an association with Merkel cell polyomavirus (MCPyV); the expression of viral T antigens is crucial for growth of virus-positive tumor cells. Since artesunate — a drug used to treat malaria — has been reported to possess additional anti-tumor as well as anti-viral activity, we sought to evaluate pre-clinically the effect of artesunate on MCC. We found that artesunate repressed growth and survival of MCPyV-positive MCC cells in vitro. This effect was accompanied by reduced large T antigen (LT) expression. Notably, however, it was even more efficient than shRNA-mediated downregulation of LT expression. Interestingly, in one MCC cell line (WaGa), T antigen knockdown rendered cells less sensitive to artesunate, while for two other MCC cell lines, we could not substantiate such a relation. Mechanistically, artesunate predominantly induces ferroptosis in MCPyV-positive MCC cells since known ferroptosis-inhibitors like DFO, BAF-A1, Fer-1 and β-mercaptoethanol reduced artesunate-induced death. Finally, application of artesunate in xenotransplanted mice demonstrated that growth of established MCC tumors can be significantly suppressed in vivo. In conclusion, our results revealed a highly anti-proliferative effect of the approved and generally well-tolerated anti-malaria compound artesunate on MCPyV-positive MCC cells, suggesting its potential usage for MCC therapy.}, language = {en} } @article{WobserRothAppenzelleretal.2021, author = {Wobser, Marion and Roth, Sabine and Appenzeller, Silke and Houben, Roland and Schrama, David and Goebeler, Matthias and Geissinger, Eva and Rosenwald, Andreas and Maurus, Katja}, title = {Targeted deep sequencing of mycosis fungoides reveals intracellular signaling pathways associated with aggressiveness and large cell transformation}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {21}, issn = {2072-6694}, doi = {10.3390/cancers13215512}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250094}, year = {2021}, abstract = {Introduction: Large-cell transformation (LCT) of mycosis fungoides (MF) has been associated with a higher risk of relapse and progression and, consequently, restricted prognosis. Its molecular pathogenesis has not been elucidated yet. Materials and Methods: In order to address molecular mechanisms of LCT, we performed hybrid capture panel-based sequencing of skin biopsies from 10 patients suffering from MF with LCT versus 17 patients without LCT including follow-up biopsies during clinical course, respectively (51 samples in total). The analyzed patients were attributed to three different groups based on the presence of LCT and clinical behavior. Results: While indolent MF cases without LCT did not show pathogenic driver mutations, a high rate of oncogenic alterations was detected in patients with LCT and aggressive clinical courses. Various genes of different oncogenic signaling pathways, including the MAPK and JAK-STAT signaling pathways, as well as epigenetic modifiers were affected. A high inter-individual and distinctive intra-individual mutation diversity was observed. Oncogenic RAS mutations were exclusively detected in patients with LCT. Conclusion: Our data demonstrate that LCT transition of MF is associated with increased frequency of somatic mutations in cancer-associated genes. In particular, the activation of RAS signaling — together with epigenetic dysregulation — may crucially contribute to the molecular pathogenesis of the LCT phenotype, thus conveying its adverse clinical behavior.}, language = {en} } @article{ThiemHesbacherKneitzetal.2019, author = {Thiem, Alexander and Hesbacher, Sonja and Kneitz, Hermann and di Primio, Teresa and Heppt, Markus V. and Hermanns, Heike M. and Goebeler, Matthias and Meierjohann, Svenja and Houben, Roland and Schrama, David}, title = {IFN-gamma-induced PD-L1 expression in melanoma depends on p53 expression}, series = {Journal of Experimental \& Clinical Cancer Research}, volume = {38}, journal = {Journal of Experimental \& Clinical Cancer Research}, doi = {10.1186/s13046-019-1403-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201016}, pages = {397}, year = {2019}, abstract = {Background Immune checkpoint inhibition and in particular anti-PD-1 immunotherapy have revolutionized the treatment of advanced melanoma. In this regard, higher tumoral PD-L1 protein (gene name: CD274) expression is associated with better clinical response and increased survival to anti-PD-1 therapy. Moreover, there is increasing evidence that tumor suppressor proteins are involved in immune regulation and are capable of modulating the expression of immune checkpoint proteins. Here, we determined the role of p53 protein (gene name: TP53) in the regulation of PD-L1 expression in melanoma. Methods We analyzed publicly available mRNA and protein expression data from the cancer genome/proteome atlas and performed immunohistochemistry on tumors with known TP53 status. Constitutive and IFN-ɣ-induced PD-L1 expression upon p53 knockdown in wildtype, TP53-mutated or JAK2-overexpressing melanoma cells or in cells, in which p53 was rendered transcriptionally inactive by CRISPR/Cas9, was determined by immunoblot or flow cytometry. Similarly, PD-L1 expression was investigated after overexpression of a transcriptionally-impaired p53 (L22Q, W23S) in TP53-wt or a TP53-knockout melanoma cell line. Immunoblot was applied to analyze the IFN-ɣ signaling pathway. Results For TP53-mutated tumors, an increased CD274 mRNA expression and a higher frequency of PD-L1 positivity was observed. Interestingly, positive correlations of IFNG mRNA and PD-L1 protein in both TP53-wt and -mutated samples and of p53 and PD-L1 protein suggest a non-transcriptional mode of action of p53. Indeed, cell line experiments revealed a diminished IFN-ɣ-induced PD-L1 expression upon p53 knockdown in both wildtype and TP53-mutated melanoma cells, which was not the case when p53 wildtype protein was rendered transcriptionally inactive or by ectopic expression of p53\(^{L22Q,W23S}\), a transcriptionally-impaired variant, in TP53-wt cells. Accordingly, expression of p53\(^{L22Q,W23S}\) in a TP53-knockout melanoma cell line boosted IFN-ɣ-induced PD-L1 expression. The impaired PD-L1-inducibility after p53 knockdown was associated with a reduced JAK2 expression in the cells and was almost abrogated by JAK2 overexpression. Conclusions While having only a small impact on basal PD-L1 expression, both wildtype and mutated p53 play an important positive role for IFN-ɣ-induced PD-L1 expression in melanoma cells by supporting JAK2 expression. Future studies should address, whether p53 expression levels might influence response to anti-PD-1 immunotherapy.}, language = {en} } @article{EsnaultSchramaHoubenetal.2022, author = {Esnault, Clara and Schrama, David and Houben, Roland and Guy{\´e}tant, Serge and Desgranges, Audrey and Martin, Camille and Berthon, Patricia and Viaud-Massuard, Marie-Claude and Touz{\´e}, Antoine and Kervarrec, Thibault and Samimi, Mahtab}, title = {Antibody-drug conjugates as an emerging therapy in oncodermatology}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {3}, issn = {2072-6694}, doi = {10.3390/cancers14030778}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262192}, year = {2022}, abstract = {Antibody-drug conjugates (ADCs) are an emerging class of therapeutics, with twelve FDA- and EMA-approved drugs for hematological and solid cancers. Such drugs consist in a monoclonal antibody linked to a cytotoxic agent, allowing a specific cytotoxicity to tumor cells. In recent years, tremendous progress has been observed in therapeutic approaches for advanced skin cancer patients. In this regard, targeted therapies (e.g., kinase inhibitors) or immune checkpoint-blocking antibodies outperformed conventional chemotherapy, with proven benefit to survival. Nevertheless, primary and acquired resistances as well as adverse events remain limitations of these therapies. Therefore, ADCs appear as an emerging therapeutic option in oncodermatology. After providing an overview of ADC design and development, the goal of this article is to review the potential ADC indications in the field of oncodermatology.}, language = {en} } @article{HoubenEbertHesbacheretal., author = {Houben, Roland and Ebert, Marlies and Hesbacher, Sonja and Kervarrec, Thibault and Schrama, David}, title = {Merkel Cell Polyomavirus Large T Antigen is Dispensable in G2 and M-Phase to Promote Proliferation of Merkel Cell Carcinoma Cells}, series = {Viruses}, volume = {12}, journal = {Viruses}, number = {10}, issn = {1999-4915}, doi = {10.3390/v12101162}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218171}, abstract = {Merkel cell carcinoma (MCC) is an aggressive skin cancer frequently caused by the Merkel cell polyomavirus (MCPyV), and proliferation of MCPyV-positive MCC tumor cells depends on the expression of a virus-encoded truncated Large T antigen (LT) oncoprotein. Here, we asked in which phases of the cell cycle LT activity is required for MCC cell proliferation. Hence, we generated fusion-proteins of MCPyV-LT and parts of geminin (GMMN) or chromatin licensing and DNA replication factor1 (CDT1). This allowed us to ectopically express an LT, which is degraded either in the G1 or G2 phase of the cell cycle, respectively, in MCC cells with inducible T antigen knockdown. We demonstrate that LT expressed only in G1 is capable of rescuing LT knockdown-induced growth suppression while LT expressed in S and G2/M phases fails to support proliferation of MCC cells. These results suggest that the crucial function of LT, which has been demonstrated to be inactivation of the cellular Retinoblastoma protein 1 (RB1) is only required to initiate S phase entry.}, language = {en} } @article{WobserWeberGlunzetal.2019, author = {Wobser, Marion and Weber, Alexandra and Glunz, Amelie and Tauch, Saskia and Seitz, Kristina and Butelmann, Tobias and Hesbacher, Sonja and Goebeler, Matthias and Bartz, Ren{\´e} and Kohlhof, Hella and Schrama, David and Houben, Roland}, title = {Elucidating the mechanism of action of domatinostat (4SC-202) in cutaneous T cell lymphoma cells}, series = {Journal of Hematology \& Oncology}, volume = {12}, journal = {Journal of Hematology \& Oncology}, doi = {10.1186/s13045-019-0719-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200703}, pages = {30}, year = {2019}, abstract = {Background Targeting epigenetic modifiers is effective in cutaneous T cell lymphoma (CTCL). However, there is a need for further improvement of this therapeutic approach. Here, we compared the mode of action of romidepsin (FK228), an established class I histone deacetylase inhibitor, and domatinostat (4SC-202), a novel inhibitor of class I HDACs, which has been reported to also target the lysine-specific histone demethylase 1A (LSD1). Methods We performed MTS assays and flow cytometric analyses of propidium iodide or annexin V-stained cells to assess drug impact on cellular proliferation, cell cycle distribution, and survival. Histone acetylation and methylation as well as caspase activation was analyzed by immunoblot. Gene expression analysis was performed using NanosString technology. Knockdown and knockout of LSD1 was achieved with shRNA and CRISPR/Cas9, respectively, while the CRISPR/Cas9 synergistic activation mediator system was used to induce expression of endogenous HDACs and LSD1. Furthermore, time-lapse fluorescence microscopy and an in vitro tubulin polymerization assay were applied. Results While FK228 as well as 4SC-202 potently induced cell death in six different CTCL cell lines, only in the case of 4SC-202 death was preceded by an accumulation of cells in the G2/M phase of the cell cycle. Surprisingly, apoptosis and accumulation of cells with double DNA content occurred already at 4SC-202 concentrations hardly affecting histone acetylation and methylation, and provoking significantly less changes in gene expression compared to biologically equivalent doses of FK228. Indeed, we provide evidence that the 4SC-202-induced G2/M arrest in CTCL cells is independent of de novo transcription. Furthermore, neither enforced expression of HDAC1 nor knockdown or knockout of LSD1 affected the 4SC-202-induced effects. Since time-lapse microscopy revealed that 4SC-202 could affect mitotic spindle formation, we performed an in vitro tubulin polymerization assay revealing that 4SC-202 can directly inhibit microtubule formation. Conclusions We demonstrate that 4SC-202, a drug currently tested in clinical trials, effectively inhibits growth of CTCL cells. The anti-cancer cell activity of 4SC-202 is however not limited to LSD1-inhibition, modulation of histone modifications, and consecutive alteration of gene expression. Indeed, the compound is also a potent microtubule-destabilizing agent.}, language = {en} }