@unpublished{BoehnkeDellermannCeliketal.2018, author = {B{\"o}hnke, Julian and Dellermann, Theresa and Celik, Mehmet Ali and Krummenacher, Ivo and Dewhurst, Rian D. and Demeshko, Serhiy and Ewing, William C. and Hammond, Kai and Heß, Merlin and Bill, Eckhard and Welz, Eileen and R{\"o}hr, Merle I. S. and Mitric, Roland and Engels, Bernd and Meyer, Franc and Braunschweig, Holger}, title = {Isolation of diradical products of twisted double bonds}, series = {Nature Communications}, journal = {Nature Communications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160248}, year = {2018}, abstract = {Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound.}, language = {en} } @article{LisinetskayaBraunProchetal.2016, author = {Lisinetskaya, Polina and Braun, Christian and Proch, Sebastian and Kim, Young Dok and Gantef{\"o}r, Gerd and Mitrić, Roland}, title = {Excited state nonadiabatic dynamics of bare and hydrated anionic gold clusters Au\(^-_3\)[H\(_2\)O]\(_n\) (n=0-2)}, series = {Physical Chemistry Chemical Physics}, volume = {18}, journal = {Physical Chemistry Chemical Physics}, number = {9}, issn = {1463-9076}, doi = {10.1039/c5cp04297f}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159176}, pages = {6411-6419}, year = {2016}, abstract = {We present a joint theoretical and experimental study of excited state dynamics in pure and hydrated anionic gold clusters Au\(^-_3\)[H\(_2\)O]\(_n\) (n = 0-2). We employ mixed quantum-classical dynamics combined with femtosecond time-resolved photoelectron spectroscopy in order to investigate the influence of hydration on excited state lifetimes and photo-dissociation dynamics. A gradual decrease of the excited state lifetime with the number of adsorbed water molecules as well as gold cluster fragmentation quenching by two or more water molecules are observed both in experiment and in simulations. Non-radiative relaxation and dissociation in excited states are found to be responsible for the excited state population depletion. Time constants of these two processes strongly depend on the number of water molecules leading to the possibility to modulate excited state dynamics and fragmentation of the anionic cluster by adsorption of water molecules.}, language = {en} } @article{LisinetskayaRoehrMitrić2016, author = {Lisinetskaya, Polina and R{\"o}hr, Merle I. S. and Mitrić, Roland}, title = {First-principles simulation of light propagation and exciton dynamics in metal cluster nanostructures}, series = {Applied Physics B}, volume = {122}, journal = {Applied Physics B}, number = {6}, issn = {0946-2171}, doi = {10.1007/s00340-016-6436-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159193}, pages = {175}, year = {2016}, abstract = {We present a theoretical approach for the simulation of the electric field and exciton propagation in ordered arrays constructed of molecular-sized noble metal clusters bound to organic polymer templates. In order to describe the electronic coupling between individual constituents of the nanostructure we use the ab initio parameterized transition charge method which is more accurate than the usual dipole-dipole coupling. The electronic population dynamics in the nanostructure under an external laser pulse excitation is simulated by numerical integration of the time-dependent Schrodinger equation employing the fully coupled Hamiltonian. The solution of the TDSE gives rise to time-dependent partial point charges for each subunit of the nanostructure, and the spatio-temporal electric field distribution is evaluated by means of classical electrodynamics methods. The time-dependent partial charges are determined based on the stationary partial and transition charges obtained in the framework of the TDDFT. In order to treat large plasmonic nanostructures constructed of many constituents, the approximate self-consistent iterative approach presented in (Lisinetskaya and Mitric in Phys Rev B 89:035433, 2014) is modified to include the transition-charge-based interaction. The developed methods are used to study the optical response and exciton dynamics of Ag-3(+) and porphyrin-Ag-4 dimers. Subsequently, the spatio-temporal electric field distribution in a ring constructed of ten porphyrin-Ag-4 subunits under the action of circularly polarized laser pulse is simulated. The presented methodology provides a theoretical basis for the investigation of coupled light-exciton propagation in nanoarchitectures built from molecular size metal nanoclusters in which quantum confinement effects are important.}, language = {en} } @article{WohlgemuthMitric2016, author = {Wohlgemuth, Matthias and Mitric, Roland}, title = {Photochemical Chiral Symmetry Breaking in Alanine}, series = {Journal of Physical Chemistry A}, volume = {45}, journal = {Journal of Physical Chemistry A}, number = {120}, doi = {10.1021/acs.jpca.6b07611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158557}, pages = {8976-8982}, year = {2016}, abstract = {We introduce a general theoretical approach for the simulation of photochemical dynamics under the influence of circularly polarized light to explore the possibility of generating enantiomeric enrichment through polarized-light-selective photochemistry. The method is applied to the simulation of the photolysis of alanine, a prototype chiral amino acid. We show that a systematic enantiomeric enrichment can be obtained depending on the helicity of the circularly polarized light that induces the excited-state photochemistry of alanine. By analyzing the patterns of the photoinduced fragmentation of alanine we find an inducible enantiomeric enrichment up to 1.7\%, which is also in good correspondence to the experimental findings. Our method is generally applicable to complex systems and might serve to systematically explore the photochemical origin of homochirality.}, language = {en} } @unpublished{PetersenLindnerMitric2018, author = {Petersen, Jens and Lindner, Joachim O. and Mitric, Roland}, title = {Ultrafast Photodynamics of Glucose}, series = {Journal of Physical Chemistry B}, journal = {Journal of Physical Chemistry B}, doi = {10.1021/acs.jpcb.7b08602}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159155}, year = {2018}, abstract = {We have investigated the photodynamics of \(\beta\)-D-glucose employing our field-induced surface hopping method (FISH), which allows us to simulate the coupled electron-nuclear dynamics, including explicitly nonadiabatic effects and light-induced excitation. Our results reveal that from the initially populated S\(_{1}\) and S\(_{2}\) states, glucose returns nonradiatively to the ground state within about 200 fs. This takes place mainly via conical intersections (CIs) whose geometries in most cases involve the elongation of a single O-H bond, while in some instances ring-opening due to dissociation of a C-O bond is observed. Experimentally, excitation to a distinct excited electronic state is improbable due to the presence of a dense manifold of states bearing similar oscillator strengths. Our FISH simulations explicitly including a UV laser pulse of 6.43 eV photon energy reveals that after initial excitation the population is almost equally spread over several close-lying electronic states. This is followed by a fast nonradiative decay on the time scale of 100-200 fs, with the final return to the ground state proceeding via the S\(_{1}\) state through the same types of CIs as observed in the field-free simulations.}, language = {en} } @article{HocheSchmittHumeniuketal.2017, author = {Hoche, Joscha and Schmitt, Hans-Christian and Humeniuk, Alexander and Fischer, Ingo and Mitrić, Roland and R{\"o}hr, Merle I. S.}, title = {The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer}, series = {Physical Chemistry Chemical Physics}, volume = {19}, journal = {Physical Chemistry Chemical Physics}, number = {36}, doi = {10.1039/C7CP03990E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159514}, pages = {25002-25015}, year = {2017}, abstract = {The understanding of excimer formation in organic materials is of fundamental importance, since excimers profoundly influence their functional performance in applications such as light-harvesting, photovoltaics or organic electronics. We present a joint experimental and theoretical study of the ultrafast dynamics of excimer formation in the pyrene dimer in a supersonic jet, which is the archetype of an excimer forming system. We perform simulations of the nonadiabatic photodynamics in the frame of TDDFT that reveal two distinct excimer formation pathways in the gas-phase dimer. The first pathway involves local excited state relaxation close to the initial Franck-Condon geometry that is characterized by a strong excitation of the stacking coordinate exhibiting damped oscillations with a period of 350 fs that persist for several picoseconds. The second excimer forming pathway involves large amplitude oscillations along the parallel shift coordinate with a period of ≈900 fs that after intramolecular vibrational energy redistribution leads to the formation of a perfectly stacked dimer. The electronic relaxation within the excitonic manifold is mediated by the presence of intermolecular conical intersections formed between fully delocalized excitonic states. Such conical intersections may generally arise in stacked π-conjugated aggregates due to the interplay between the long-range and short-range electronic coupling. The simulations are supported by picosecond photoionization experiments in a supersonic jet that provide a time-constant for the excimer formation of around 6-7 ps, in good agreement with theory. Finally, in order to explore how the crystal environment influences the excimer formation dynamics we perform large scale QM/MM nonadiabatic dynamics simulations on a pyrene crystal in the framework of the long-range corrected tight-binding TDDFT. In contrast to the isolated dimer, the excimer formation in the crystal follows a single reaction pathway in which the initially excited parallel slip motion is strongly damped by the interaction with the surrounding molecules leading to the slow excimer stabilization on a picosecond time scale.}, language = {en} } @unpublished{LambertVoelkerKochetal.2015, author = {Lambert, Christoph and V{\"o}lker, Sebastian F. and Koch, Federico and Schmiedel, Alexander and Holzapfel, Marco and Humeniuk, Alexander and R{\"o}hr, Merle I. S. and Mitric, Roland and Brixner, Tobias}, title = {Energy Transfer Between Squaraine Polymer Sections: From helix to zig-zag and All the Way Back}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.5b03644}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159607}, year = {2015}, abstract = {Joint experimental and theoretical study of the absorption spectra of squaraine polymers in solution provide evidence that two different conformations are present in solution: a helix and a zig-zag structure. This unique situation allows investigating ultrafast energy transfer processes between different structural segments within a single polymer chain in solution. The understanding of the underlying dynamics is of fundamental importance for the development of novel materials for light-harvesting and optoelectronic applications. We combine here femtosecond transient absorption spectroscopy with time-resolved 2D electronic spectroscopy showing that ultrafast energy transfer within the squaraine polymer chains proceeds from initially excited helix segments to zig-zag segments or vice versa, depending on the solvent as well as on the excitation wavenumber. These observations contrast other conjugated polymers such as MEH-PPV where much slower intrachain energy transfer was reported. The reason for the very fast energy transfer in squaraine polymers is most likely a close matching of the density of states between donor and acceptor polymer segments because of very small reorganization energy in these cyanine-like chromophores.}, language = {en} } @article{RoehrLisinetskayaMitric2016, author = {R{\"o}hr, Merle I. S. and Lisinetskaya, Polina G. and Mitric, Roland}, title = {Excitonic Properties of Ordered Metal Nanocluster Arrays: 2D Silver Clusters at Multiporphyrin Templates}, series = {Journal of Physical Chemistry A}, volume = {120}, journal = {Journal of Physical Chemistry A}, number = {26}, doi = {10.1021/acs.jpca.6b04243}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159464}, pages = {4465-4472}, year = {2016}, abstract = {The design of ordered arrays of metal nanoclusters such as for example 2D cluster organic frameworks might open a new route towards the development of materials with tailored optical properties. Such systems could serve as plasmonically enhanced light-harvesting materials, sensors or catalysts. We present here a theoretical approach for the simulation of the optical properties of ordered arrays of metal clusters that is based on the ab initio parametrized Frenkel exciton model. We demonstrate that small atomically precise silver clusters can be assembled in one- and two-dimensional arrays on suitably designed porphyrin templates exhibiting remarkable optical properties. By employing explicit TDDFT calculations on smaller homologs, we show that the intrinsic optical properties of metal clusters are largely preserved but undergo J- and H-type excitonic coupling that results in controllable splitting of their excited states. Furthermore, ab initio parameterized Frenkel exciton model calculations allow us to predict an energetic splitting of up to 0.77 eV in extended two-dimensional square arrays and 0.79 eV in tilted square aggregates containing up to 25 cluster-porphyrin subunits.}, language = {en} } @unpublished{RoederHumeniukGiegerichetal.2017, author = {R{\"o}der, Anja and Humeniuk, Alexander and Giegerich, Jens and Fischer, Ingo and Poisson, Lionel and Mitric, Roland}, title = {Femtosecond Time-Resolved Photoelectron Spectroscopy of the Benzyl Radical}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, doi = {10.1039/C7CP01437F}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159474}, year = {2017}, abstract = {We present a joint experimental and computational study of the nonradiative deactivation of the benzyl radical, C\(_7\)H\(_7\) after UV excitation. Femtosecond time-resolved photoelectron imaging was applied to investigate the photodynamics of the radical. The experiments were accompanied by excited state dynamics simulations using surface hopping. Benzyl has been excited at 265 nm into the D-band (\(\pi\pi^*\)) and the dynamics was probed using probe wavelengths of 398 nm or 798 nm. With 398 nm probe a single time constant of around 70-80 fs was observed. When the dynamics was probed at 798 nm, a second time constant \(\tau_2\)=1.5 ps was visible. It is assigned to further non-radiative deactivation to the lower-lying D\(_1\)/D\(_2\) states.}, language = {en} } @unpublished{WohlgemuthMiyazakiTsukadaetal.2017, author = {Wohlgemuth, Matthias and Miyazaki, Mitsuhiko and Tsukada, Kohei and Weiler, Martin and Dopfer, Otto and Fujii, Masaaki and Mitrić, Roland}, title = {Deciphering environment effects in peptide bond solvation dynamics by experiment and theory}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, doi = {10.1039/C7CP03992A}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159483}, year = {2017}, abstract = {Most proteins work in aqueous solution and the interaction with water strongly affects their structure and function. However, experimentally the motion of a specific single water molecule is difficult to trace by conventional methods, because they average over the heterogeneous solvation structure of bulk water surrounding the protein. Here, we provide a detailed atomistic picture of the water rearrangement dynamics around the -CONH- peptide linkage in the two model systems formanilide and acetanilide, which simply differ by the presence of a methyl group at the peptide linkage. The combination of picosecond pump-probe time-resolved infrared spectroscopy and molecular dynamics simulations demonstrates that the solvation dynamics at the molecular level is strongly influenced by this small structural difference. The effective timescales for solvent migration triggered by ionization are mainly controlled by the efficiency of the kinetic energy redistribution rather than the shape of the potential energy surface. This approach provides a fundamental understanding of protein hydration and may help to design functional molecules in solution with tailored properties.}, language = {en} }