@article{GerhardHartmannWiegeringBenoitetal.2021, author = {Gerhard-Hartmann, Elena and Wiegering, Verena and Benoit, Clemens and Meyer, Thomas and Rosenwald, Andreas and Maurus, Katja and Ernestus, Karen}, title = {A large retroperitoneal lipoblastoma as an incidental finding: a case report}, series = {BMC Pediatrics}, volume = {21}, journal = {BMC Pediatrics}, doi = {10.1186/s12887-021-02628-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260173}, year = {2021}, abstract = {Background Lipoblastoma is a rare benign mesenchymal neoplasm of infancy that most commonly occurs on the extremities and trunk but can arise at variable sites of the body. Retroperitoneal lipoblastomas are particularly rare but can grow to enormous size, and preoperative diagnosis is difficult with diverse, mostly malignant differential diagnoses that would lead to aggressive therapy. Since lipoblastoma is a benign tumor that has an excellent prognosis after resection, correct diagnosis is crucial. Case presentation A case of a large retroperitoneal tumor of a 24-month old infant that was clinically suspicious of a malignant tumor is presented. Due to proximity to the right kidney, clinically most probably a nephroblastoma or clear cell sarcoma of the kidney was suspected. Radiological findings were ambiguous. Therefore, the mass was biopsied, and histology revealed an adipocytic lesion. Although mostly composed of mature adipocytes, in view of the age of the patient, the differential diagnosis of a (maturing) lipoblastoma was raised, which was supported by molecular analysis demonstrating a HAS2-PLAG1 fusion. The tumor was completely resected, and further histopathological workup led to the final diagnosis of a 13 cm large retroperitoneal maturing lipoblastoma. The child recovered promptly from surgery and showed no evidence of recurrence so far. Conclusion Although rare, lipoblastoma should be included in the differential diagnoses of retroperitoneal tumors in infants and children, and molecular diagnostic approaches could be a helpful diagnostic adjunct in challenging cases.}, language = {en} } @article{DanhofRascheMottoketal.2021, author = {Danhof, Sophia and Rasche, Leo and Mottok, Anja and Steinm{\"u}ller, Tabea and Zhou, Xiang and Schreder, Martin and Kilian, Teresa and Strifler, Susanne and Rosenwald, Andreas and Hudecek, Michael and Einsele, Hermann and Gerhard-Hartmann, Elena}, title = {Elotuzumab for the treatment of extramedullary myeloma: a retrospective analysis of clinical efficacy and SLAMF7 expression patterns}, series = {Annals of Hematology}, volume = {100}, journal = {Annals of Hematology}, number = {6}, issn = {1432-0584}, doi = {10.1007/s00277-021-04447-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266468}, pages = {1537-1546}, year = {2021}, abstract = {Extramedullary disease (EMD) represents a high-risk state of multiple myeloma (MM) associated with poor prognosis. While most anti-myeloma therapeutics demonstrate limited efficacy in this setting, some studies exploring the utility of chimeric antigen receptor (CAR)-modified T cells reported promising results. We have recently designed SLAMF7-directed CAR T cells for the treatment of MM. SLAMF7 is a transmembrane receptor expressed on myeloma cells that plays a role in myeloma cell homing to the bone marrow. Currently, the only approved anti-SLAMF7 therapeutic is the monoclonal antibody elotuzumab, but its efficacy in EMD has not been investigated thoroughly. Thus, we retrospectively analyzed the efficacy of elotuzumab-based combination therapy in a cohort of 15 patients with EMD. Moreover, since the presence of the target antigen is an indispensable prerequisite for effective targeted therapy, we investigated the SLAMF7 expression on extramedullary located tumor cells before and after treatment. We observed limited efficacy of elotuzumab-based combination therapies, with an overall response rate of 40\% and a progression-free and overall survival of 3.8 and 12.9 months, respectively. Before treatment initiation, all available EMD tissue specimens (n = 3) demonstrated a strong and consistent SLAMF7 surface expression by immunohistochemistry. Furthermore, to investigate a potential antigen reduction under therapeutic selection pressure, we analyzed samples of de novo EMD (n = 3) outgrown during elotuzumab treatment. Again, immunohistochemistry documented strong and consistent SLAMF7 expression in all samples. In aggregate, our data point towards a retained expression of SLAMF7 in EMD and encourage the development of more potent SLAMF7-directed immunotherapies, such as CAR T cells.}, language = {en} } @article{WobserRothAppenzelleretal.2021, author = {Wobser, Marion and Roth, Sabine and Appenzeller, Silke and Houben, Roland and Schrama, David and Goebeler, Matthias and Geissinger, Eva and Rosenwald, Andreas and Maurus, Katja}, title = {Targeted deep sequencing of mycosis fungoides reveals intracellular signaling pathways associated with aggressiveness and large cell transformation}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {21}, issn = {2072-6694}, doi = {10.3390/cancers13215512}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250094}, year = {2021}, abstract = {Introduction: Large-cell transformation (LCT) of mycosis fungoides (MF) has been associated with a higher risk of relapse and progression and, consequently, restricted prognosis. Its molecular pathogenesis has not been elucidated yet. Materials and Methods: In order to address molecular mechanisms of LCT, we performed hybrid capture panel-based sequencing of skin biopsies from 10 patients suffering from MF with LCT versus 17 patients without LCT including follow-up biopsies during clinical course, respectively (51 samples in total). The analyzed patients were attributed to three different groups based on the presence of LCT and clinical behavior. Results: While indolent MF cases without LCT did not show pathogenic driver mutations, a high rate of oncogenic alterations was detected in patients with LCT and aggressive clinical courses. Various genes of different oncogenic signaling pathways, including the MAPK and JAK-STAT signaling pathways, as well as epigenetic modifiers were affected. A high inter-individual and distinctive intra-individual mutation diversity was observed. Oncogenic RAS mutations were exclusively detected in patients with LCT. Conclusion: Our data demonstrate that LCT transition of MF is associated with increased frequency of somatic mutations in cancer-associated genes. In particular, the activation of RAS signaling — together with epigenetic dysregulation — may crucially contribute to the molecular pathogenesis of the LCT phenotype, thus conveying its adverse clinical behavior.}, language = {en} } @article{LoefflerWirthKreuzHoppetal.2019, author = {Loeffler-Wirth, Henry and Kreuz, Markus and Hopp, Lydia and Arakelyan, Arsen and Haake, Andrea and Cogliatti, Sergio B. and Feller, Alfred C. and Hansmann, Martin-Leo and Lenze, Dido and M{\"o}ller, Peter and M{\"u}ller-Hermelink, Hans Konrad and Fortenbacher, Erik and Willscher, Edith and Ott, German and Rosenwald, Andreas and Pott, Christiane and Schwaenen, Carsten and Trautmann, Heiko and Wessendorf, Swen and Stein, Harald and Szczepanowski, Monika and Tr{\"u}mper, Lorenz and Hummel, Michael and Klapper, Wolfram and Siebert, Reiner and Loeffler, Markus and Binder, Hans}, title = {A modular transcriptome map of mature B cell lymphomas}, series = {Genome Medicine}, volume = {11}, journal = {Genome Medicine}, doi = {10.1186/s13073-019-0637-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237262}, year = {2019}, abstract = {Background Germinal center-derived B cell lymphomas are tumors of the lymphoid tissues representing one of the most heterogeneous malignancies. Here we characterize the variety of transcriptomic phenotypes of this disease based on 873 biopsy specimens collected in the German Cancer Aid MMML (Molecular Mechanisms in Malignant Lymphoma) consortium. They include diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), Burkitt's lymphoma, mixed FL/DLBCL lymphomas, primary mediastinal large B cell lymphoma, multiple myeloma, IRF4-rearranged large cell lymphoma, MYC-negative Burkitt-like lymphoma with chr. 11q aberration and mantle cell lymphoma. Methods We apply self-organizing map (SOM) machine learning to microarray-derived expression data to generate a holistic view on the transcriptome landscape of lymphomas, to describe the multidimensional nature of gene regulation and to pursue a modular view on co-expression. Expression data were complemented by pathological, genetic and clinical characteristics. Results We present a transcriptome map of B cell lymphomas that allows visual comparison between the SOM portraits of different lymphoma strata and individual cases. It decomposes into one dozen modules of co-expressed genes related to different functional categories, to genetic defects and to the pathogenesis of lymphomas. On a molecular level, this disease rather forms a continuum of expression states than clearly separated phenotypes. We introduced the concept of combinatorial pattern types (PATs) that stratifies the lymphomas into nine PAT groups and, on a coarser level, into five prominent cancer hallmark types with proliferation, inflammation and stroma signatures. Inflammation signatures in combination with healthy B cell and tonsil characteristics associate with better overall survival rates, while proliferation in combination with inflammation and plasma cell characteristics worsens it. A phenotypic similarity tree is presented that reveals possible progression paths along the transcriptional dimensions. Our analysis provided a novel look on the transition range between FL and DLBCL, on DLBCL with poor prognosis showing expression patterns resembling that of Burkitt's lymphoma and particularly on 'double-hit' MYC and BCL2 transformed lymphomas. Conclusions The transcriptome map provides a tool that aggregates, refines and visualizes the data collected in the MMML study and interprets them in the light of previous knowledge to provide orientation and support in current and future studies on lymphomas and on other cancer entities.}, language = {en} } @article{EngelRudeliusSlawskaetal.2016, author = {Engel, Katharina and Rudelius, Martina and Slawska, Jolanta and Jacobs, Laura and Abhari, Behnaz Ahangarian and Altmann, Bettina and Kurutz, Julia and Rathakrishnan, Abirami and Fern{\´a}ndez-S{\´a}iz, Vanesa and Brunner, Andr{\"a} and Targosz, Bianca-Sabrina and Loewecke, Felicia and Gloeckner, Christian Johannes and Ueffing, Marius and Fulda, Simone and Pfreundschuh, Michael and Tr{\"u}mper, Lorenz and Klapper, Wolfram and Keller, Ulrich and Jost, Philipp J. and Rosenwald, Andreas and Peschel, Christian and Bassermann, Florian}, title = {USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma}, series = {EMBO Molecular Medicine}, volume = {8}, journal = {EMBO Molecular Medicine}, doi = {10.15252/emmm.201506047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165016}, pages = {851-862}, year = {2016}, abstract = {The mitotic spindle assembly checkpoint (SAC) maintains genome stability and marks an important target for antineoplastic therapies. However, it has remained unclear how cells execute cell fate decisions under conditions of SAC-induced mitotic arrest. Here, we identify USP9X as the mitotic deubiquitinase of the X-linked inhibitor of apoptosis protein (XIAP) and demonstrate that deubiquitylation and stabilization of XIAP by USP9X lead to increased resistance toward mitotic spindle poisons. We find that primary human aggressive B-cell lymphoma samples exhibit high USP9X expression that correlate with XIAP overexpression. We show that high USP9X/XIAP expression is associated with shorter event-free survival in patients treated with spindle poison-containing chemotherapy. Accordingly, aggressive B-cell lymphoma lines with USP9X and associated XIAP overexpression exhibit increased chemoresistance, reversed by specific inhibition of either USP9X or XIAP. Moreover, knockdown of USP9X or XIAP significantly delays lymphoma development and increases sensitivity to spindle poisons in a murine Eμ-Myc lymphoma model. Together, we specify the USP9X-XIAP axis as a regulator of the mitotic cell fate decision and propose that USP9X and XIAP are potential prognostic biomarkers and therapeutic targets in aggressive B-cell lymphoma.}, language = {en} } @article{GaritanoTrojaolaSanchoGoetzetal.2021, author = {Garitano-Trojaola, Andoni and Sancho, Ana and G{\"o}tz, Ralph and Eiring, Patrick and Walz, Susanne and Jetani, Hardikkumar and Gil-Pulido, Jesus and Da Via, Matteo Claudio and Teufel, Eva and Rhodes, Nadine and Haertle, Larissa and Arellano-Viera, Estibaliz and Tibes, Raoul and Rosenwald, Andreas and Rasche, Leo and Hudecek, Michael and Sauer, Markus and Groll, J{\"u}rgen and Einsele, Hermann and Kraus, Sabrina and Kort{\"u}m, Martin K.}, title = {Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-021-02215-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260709}, year = {2021}, abstract = {The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD+AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD+AML. Garitano-Trojaola et al. used a combination of human acute myeloid leukemia (AML) cell lines and primary samples to show that RAC1-dependent actin cytoskeleton remodeling through BCL2 family plays a key role in resistance to the FLT3 inhibitor, Midostaurin in AML. They showed that by targeting RAC1 and BCL2, Midostaurin resistance was diminished, which potentially paves the way for an innovate treatment approach for FLT3 mutant AML.}, language = {en} } @article{WallstabeBussemerGroeberBeckeretal.2020, author = {Wallstabe, Julia and Bussemer, Lydia and Groeber-Becker, Florian and Freund, Lukas and Alb, Mirian and Dragan, Mariola and Waaga-Gasser, Ana Maria and Jakubietz, Rafael and Kneitz, Hermann and Rosenwald, Andreas and Rebhan, Silke and Walles, Heike and Mielke, Stephan}, title = {Inflammation-Induced Tissue Damage Mimicking GvHD in Human Skin Models as Test Platform for Immunotherapeutics}, series = {ALTEX}, volume = {37}, journal = {ALTEX}, number = {3}, doi = {10.14573/altex.1907181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229974}, pages = {429-440}, year = {2020}, abstract = {Due to the rapidly increasing development and use of cellular products, there is a rising demand for non-animal-based test platforms to predict, study and treat undesired immunity. Here, we generated human organotypic skin models from human biopsies by isolating and expanding keratinocytes, fibroblasts and microvascular endothelial cells and seeding these components on a collagen matrix or a biological vascularized scaffold matrix in a bioreactor. We then were able to induce inflammation-mediated tissue damage by adding pre-stimulated, mismatched allogeneic lymphocytes and/or inflammatory cytokine-containing supernatants histomorphologically mimicking severe graft versus host disease (GvHD) of the skin. This could be prevented by the addition of immunosuppressants to the models. Consequently, these models harbor a promising potential to serve as a test platform for the prediction, prevention and treatment of GvHD. They also allow functional studies of immune effectors and suppressors including but not limited to allodepleted lymphocytes, gamma-delta T cells, regulatory T cells and mesenchymal stromal cells, which would otherwise be limited to animal models. Thus, the current test platform, developed with the limitation that no professional antigen presenting cells are in place, could greatly reduce animal testing for investigation of novel immune therapies.}, language = {en} } @article{MainzSarhanRothetal.2022, author = {Mainz, Laura and Sarhan, Mohamed A. F. E. and Roth, Sabine and Sauer, Ursula and Maurus, Katja and Hartmann, Elena M. and Seibert, Helen-Desiree and Rosenwald, Andreas and Diefenbacher, Markus E. and Rosenfeldt, Mathias T.}, title = {Autophagy blockage reduces the incidence of pancreatic ductal adenocarcinoma in the context of mutant Trp53}, series = {Frontiers in Cell and Developmental Biology}, volume = {10}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2022.785252}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266005}, year = {2022}, abstract = {Macroautophagy (hereafter referred to as autophagy) is a homeostatic process that preserves cellular integrity. In mice, autophagy regulates pancreatic ductal adenocarcinoma (PDAC) development in a manner dependent on the status of the tumor suppressor gene Trp53. Studies published so far have investigated the impact of autophagy blockage in tumors arising from Trp53-hemizygous or -homozygous tissue. In contrast, in human PDACs the tumor suppressor gene TP53 is mutated rather than allelically lost, and TP53 mutants retain pathobiological functions that differ from complete allelic loss. In order to better represent the patient situation, we have investigated PDAC development in a well-characterized genetically engineered mouse model (GEMM) of PDAC with mutant Trp53 (Trp53\(^{R172H}\)) and deletion of the essential autophagy gene Atg7. Autophagy blockage reduced PDAC incidence but had no impact on survival time in the subset of animals that formed a tumor. In the absence of Atg7, non-tumor-bearing mice reached a similar age as animals with malignant disease. However, the architecture of autophagy-deficient, tumor-free pancreata was effaced, normal acinar tissue was largely replaced with low-grade pancreatic intraepithelial neoplasias (PanINs) and insulin expressing islet β-cells were reduced. Our data add further complexity to the interplay between Atg7 inhibition and Trp53 status in tumorigenesis.}, language = {en} } @article{RosenfeldtHartmannLengetal.2021, author = {Rosenfeldt, Mathias T. and Hartmann, Elena M. and Leng, Corinna and Rosenwald, Andreas and Anagnostopoulos, Ioannis}, title = {A case of nodular lymphocyte predominant Hodgkin lymphoma with unexpected EBV-latency type}, series = {Annals of Hematology}, volume = {100}, journal = {Annals of Hematology}, issn = {0939-5555}, doi = {10.1007/s00277-020-04174-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232571}, pages = {2635-2637}, year = {2021}, abstract = {No abstract available.}, language = {en} } @article{OttoKastnerSchmidtetal.2022, author = {Otto, Christoph and Kastner, Carolin and Schmidt, Stefanie and Uttinger, Konstantin and Baluapuri, Apoorva and Denk, Sarah and Rosenfeldt, Mathias T. and Rosenwald, Andreas and Roehrig, Florian and Ade, Carsten P. and Schuelein-Voelk, Christina and Diefenbacher, Markus E. and Germer, Christoph-Thomas and Wolf, Elmar and Eilers, Martin and Wiegering, Armin}, title = {RNA polymerase I inhibition induces terminal differentiation, growth arrest, and vulnerability to senolytics in colorectal cancer cells}, series = {Molecular Oncology}, volume = {16}, journal = {Molecular Oncology}, number = {15}, doi = {10.1002/1878-0261.13265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312806}, pages = {2788-2809}, year = {2022}, abstract = {Ribosomal biogenesis and protein synthesis are deregulated in most cancers, suggesting that interfering with translation machinery may hold significant therapeutic potential. Here, we show that loss of the tumor suppressor adenomatous polyposis coli (APC), which constitutes the initiating event in the adenoma carcinoma sequence for colorectal cancer (CRC), induces the expression of RNA polymerase I (RNAPOL1) transcription machinery, and subsequently upregulates ribosomal DNA (rDNA) transcription. Targeting RNAPOL1 with a specific inhibitor, CX5461, disrupts nucleolar integrity, and induces a disbalance of ribosomal proteins. Surprisingly, CX5461-induced growth arrest is irreversible and exhibits features of senescence and terminal differentiation. Mechanistically, CX5461 promotes differentiation in an MYC-interacting zinc-finger protein 1 (MIZ1)- and retinoblastoma protein (Rb)-dependent manner. In addition, the inhibition of RNAPOL1 renders CRC cells vulnerable towards senolytic agents. We validated this therapeutic effect of CX5461 in murine- and patient-derived organoids, and in a xenograft mouse model. These results show that targeting ribosomal biogenesis together with targeting the consecutive, senescent phenotype using approved drugs is a new therapeutic approach, which can rapidly be transferred from bench to bedside.}, language = {en} }