@article{WernerOrdonezSanchezBautistaetal.2019, author = {Werner, Rudolf A. and Ordonez, Alvaro A. and Sanchez-Bautista, Julian and Marcus, Charles and Lapa, Constantin and Rowe, Steven P. and Pomper, Martin G. and Leal, Jeffrey P. and Lodge, Martin A. and Javadi, Mehrbod S. and Jain, Sanjay K. and Higuchi, Takahiro}, title = {Novel functional renal PET imaging with 18F-FDS in human subjects}, series = {Clinical Nuclear Medicine}, volume = {44}, journal = {Clinical Nuclear Medicine}, number = {5}, issn = {0363-9762}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174634}, pages = {410-411}, year = {2019}, abstract = {The novel PET probe 2-deoxy-2-18F-fluoro-D-sorbitol (18F-FDS) has demonstrated favorable renal kinetics in animals. We aimed to elucidate its imaging properties in two human volunteers. 18F-FDS was produced by a simple one-step reduction from 18F-FDG. On dynamic renal PET, the cortex was delineated and activity gradually transited in the parenchyma, followed by radiotracer excretion. No adverse effects were reported. Given the higher spatiotemporal resolution of PET relative to conventional scintigraphy, 18F-FDS PET offers a more thorough evaluation of human renal kinetics. Due to its simple production from 18F-FDG, 18F-FDS is virtually available at any PET facility with radiochemistry infrastructure.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerWakabayashiChenetal.2019, author = {Werner, Rudolf A. and Wakabayashi, Hiroshi and Chen, Xinyu and Hayakawa, Nobuyuki and Lapa, Constantin and Rowe, Steven P. and Javadi, Mehrbod S. and Robinson, Simon and Higuchi, Takahiro}, title = {Ventricular distribution pattern of the novel sympathetic nerve PET radiotracer \(^{18}\)F-LMI1195 in Rabbit Hearts}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-53596-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202707}, pages = {17026}, year = {2019}, abstract = {We aimed to determine a detailed regional ventricular distribution pattern of the novel cardiac nerve PET radiotracer \(^{18}\)F-LMI1195 in healthy rabbits. Ex-vivo high resolution autoradiographic imaging was conducted to identify accurate ventricular distribution of \(^{18}\)F-LMI1195. In healthy rabbits, \(^{18}\)F-LMI1195 was administered followed by the reference perfusion marker \(^{201}\)Tl for a dual-radiotracer analysis. After 20 min of \(^{18}\)F-LMI1195 distribution time, the rabbits were euthanized, the hearts were extracted, frozen, and cut into 20-μm short axis slices. Subsequently, the short axis sections were exposed to a phosphor imaging plate to determine \(^{18}\)F-LMI1195 distribution (exposure for 3 h). After complete \(^{18}\)F decay, sections were re-exposed to determine 201Tl distribution (exposure for 7 days). For quantitative analysis, segmental regions of Interest (ROIs) were divided into four left ventricular (LV) and a right ventricular (RV) segment on mid-ventricular short axis sections. Subendocardial, mid-portion, and subepicardial ROIs were placed on the LV lateral wall. \(^{18}\)F-LMI1195 distribution was almost homogeneous throughout the LV wall without any significant differences in all four LV ROIs (anterior, posterior, septal and lateral wall, 99 ± 2, 94 ± 5, 94 ± 4 and 97 ± 3\%LV, respectively, n.s.). Subepicardial \(^{201}\)Tl uptake was significantly lower compared to the subendocardial portion (subendocardial, mid-portion, and subepicardial activity: 90 ± 3, 96 ± 2 and *80 ± 5\%LV, respectively, *p < 0.01 vs. mid-portion). This was in contradistinction to the transmural wall profile of \(^{18}\)F-LMI1195 (90 ± 4, 96 ± 5 and 84 ± 4\%LV, n.s.). A slight but significant discrepant transmural radiotracer distribution pattern of \(^{201}\)Tl in comparison to \(^{18}\)F-LMI1195 may be a reflection of physiological sympathetic innervation and perfusion in rabbit hearts.}, language = {en} } @article{WernerMarcusSheikhbahaeietal.2018, author = {Werner, Rudolf A. and Marcus, Charles and Sheikhbahaei, Sara and Solnes, Lilja B. and Leal, Jeffrey P. and Du, Yong and Rowe, Steven P. and Higuchi, Takahiro and Buck, Andreas K. and Lapa, Constantin and Javadi, Mehrbod S.}, title = {Visual and Semiquantitative Accuracy in Clinical Baseline 123I-Ioflupane SPECT/CT Imaging}, series = {Clinical Nuclear Medicine}, volume = {44}, journal = {Clinical Nuclear Medicine}, number = {1}, issn = {1536-0229}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168181}, year = {2018}, abstract = {PURPOSE: We aimed to (a) elucidate the concordance of visual assessment of an initial I-ioflupane scan by a human interpreter with comparison to results using a fully automatic semiquantitative method and (b) to assess the accuracy compared to follow-up (f/u) diagnosis established by movement disorder specialists. METHODS: An initial I-ioflupane scan was performed in 382 patients with clinically uncertain Parkinsonian syndrome. An experienced reader performed a visual evaluation of all scans independently. The findings of the visual read were compared with semiquantitative evaluation. In addition, available f/u clinical diagnosis (serving as a reference standard) was compared with results of the human read and the software. RESULTS: When comparing the semiquantitative method with the visual assessment, discordance could be found in 25 (6.5\%) of 382 of the cases for the experienced reader (ĸ = 0.868). The human observer indicated region of interest misalignment as the main reason for discordance. With neurology f/u serving as reference, the results of the reader revealed a slightly higher accuracy rate (87.7\%, ĸ = 0.75) compared to semiquantification (86.2\%, ĸ = 0.719, P < 0.001, respectively). No significant difference in the diagnostic performance of the visual read versus software-based assessment was found. CONCLUSIONS: In comparison with a fully automatic semiquantitative method in I-ioflupane interpretation, human assessment obtained an almost perfect agreement rate. However, compared to clinical established diagnosis serving as a reference, visual read seemed to be slightly more accurate as a solely software-based quantitative assessment.}, subject = {SPECT}, language = {en} }