@article{ToyamaWernerRuizBedoyaetal.2021, author = {Toyama, Yoshitaka and Werner, Rudolf A. and Ruiz-Bedoya, Camilo A. and Ordonez, Alvaro A. and Takase, Kei and Lapa, Constantin and Jain, Sanjay K. and Pomper, Martin G. and Rowe, Steven P. and Higuchi, Takahiro}, title = {Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon}, series = {Theranostics}, volume = {11}, journal = {Theranostics}, number = {12}, doi = {10.7150/thno.58682}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260090}, pages = {6105-6119}, year = {2021}, abstract = {In recent years, a paradigm shift from single-photon-emitting radionuclide radiotracers toward positron-emission tomography (PET) radiotracers has occurred in nuclear oncology. Although PET-based molecular imaging of the kidneys is still in its infancy, such a trend has emerged in the field of functional renal radionuclide imaging. Potentially allowing for precise and thorough evaluation of renal radiotracer urodynamics, PET radionuclide imaging has numerous advantages including precise anatomical co-registration with CT images and dynamic three-dimensional imaging capability. In addition, relative to scintigraphic approaches, PET can allow for significantly reduced scan time enabling high-throughput in a busy PET practice and further reduces radiation exposure, which may have a clinical impact in pediatric populations. In recent years, multiple renal PET radiotracers labeled with C-11, Ga-68, and F-18 have been utilized in clinical studies. Beyond providing a precise non-invasive read-out of renal function, such radiotracers may also be used to assess renal inflammation. This manuscript will provide an overview of renal molecular PET imaging and will highlight the transformation of conventional scintigraphy of the kidneys toward novel, high-resolution PET imaging for assessing renal function. In addition, future applications will be introduced, e.g. by transferring the concept of molecular image-guided diagnostics and therapy (theranostics) to the field of nephrology.}, language = {en} } @article{WernerDerlinLapaetal.2020, author = {Werner, Rudolf A. and Derlin, Thorsten and Lapa, Constantin and Sheikbahaei, Sara and Higuchi, Takahiro and Giesel, Frederik L. and Behr, Spencer and Drzezga, Alexander and Kimura, Hiroyuki and Buck, Andreas K. and Bengel, Frank M. and Pomper, Martin G. and Gorin, Michael A. and Rowe, Steven P.}, title = {\(^{18}\)F-labeled, PSMA-targeted radiotracers: leveraging the advantages of radiofluorination for prostate cancer molecular imaging}, series = {Theranostics}, volume = {10}, journal = {Theranostics}, number = {1}, issn = {1838-7640}, doi = {10.7150/thno.37894}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202559}, pages = {1-16}, year = {2020}, abstract = {Prostate-specific membrane antigen (PSMA)-targeted PET imaging for prostate cancer with \(^{68}\)Ga-labeled compounds has rapidly become adopted as part of routine clinical care in many parts of the world. However, recent years have witnessed the start of a shift from \(^{68}\)Ga- to \(^{18}\)F-labeled PSMA-targeted compounds. The latter imaging agents have several key advantages, which may lay the groundwork for an even more widespread adoption into the clinic. First, facilitated delivery from distant suppliers expands the availability of PET radiopharmaceuticals in smaller hospitals operating a PET center but lacking the patient volume to justify an onsite \(^{68}\)Ge/\(^{68}\)Ga generator. Thus, such an approach meets the increasing demand for PSMA-targeted PET imaging in areas with lower population density and may even lead to cost-savings compared to in-house production. Moreover, \(^{18}\)F-labeled radiotracers have a higher positron yield and lower positron energy, which in turn decreases image noise, improves contrast resolution, and maximizes the likelihood of detecting subtle lesions. In addition, the longer half-life of 110 min allows for improved delayed imaging protocols and flexibility in study design, which may further increase diagnostic accuracy. Moreover, such compounds can be distributed to sites which are not allowed to produce radiotracers on-site due to regulatory issues or to centers without access to a cyclotron. In light of these advantageous characteristics, \(^{18}\)F-labeled PSMA-targeted PET radiotracers may play an important role in both optimizing this transformative imaging modality and making it widely available. We have aimed to provide a concise overview of emerging \(^{18}\)F-labeled PSMA-targeted radiotracers undergoing active clinical development. Given the wide array of available radiotracers, comparative studies are needed to firmly establish the role of the available \(^{18}\)F-labeled compounds in the field of molecular PCa imaging, preferably in different clinical scenarios.}, language = {en} } @article{WernerKircherHiguchietal.2019, author = {Werner, Rudolf A. and Kircher, Stefan and Higuchi, Takahiro and Kircher, Malte and Schirbel, Andreas and Wester, Hans-J{\"u}rgen and Buck, Andreas K. and Pomper, Martin G. and Rowe, Steven P. and Lapa, Constantin}, title = {CXCR4-directed imaging in solid tumors}, series = {Frontiers in Oncology}, volume = {9}, journal = {Frontiers in Oncology}, number = {770}, issn = {2234-943X}, doi = {10.3389/fonc.2019.00770}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195678}, year = {2019}, abstract = {Despite histological evidence in various solid tumor entities, available experience with CXCR4-directed diagnostics and endoradiotherapy mainly focuses on hematologic diseases. With the goal of expanding the application of CXCR4 theranostics to solid tumors, we aimed to elucidate the feasibility of CXCR4-targeted imaging in a variety of such neoplasms. Methods: Nineteen patients with newly diagnosed, treatment-na{\"i}ve solid tumors including pancreatic adenocarcinoma or neuroendocrine tumor, cholangiocarcinoma, hepatocellular carcinoma, renal cell carcinoma, ovarian cancer, and prostate cancer underwent [\(^{68}\)Ga]Pentixafor PET/CT. CXCR4-mediated uptake was assessed both visually and semi-quantitatively by evaluation of maximum standardized uptake values (SUV\(_{max}\)) of both primary tumors and metastases. With physiologic liver uptake as reference, tumor-to-background ratios (TBR) were calculated. [\(^{68}\)Ga]Pentixafor findings were further compared to immunohistochemistry and [\(^{18}\)F]FDG PET/CT. Results: On [\(^{68}\)Ga]Pentixafor PET/CT, 10/19 (52.6\%) primary tumors were visually detectable with a median SUVmax of 5.4 (range, 1.7-16.0) and a median TBR of 2.6 (range, 0.8-7.4), respectively. The highest level of radiotracer uptake was identified in a patient with cholangiocarcinoma (SUVmax, 16.0; TBR, 7.4). The relatively low uptake on [\(^{68}\)Ga]Pentixafor was also noted in metastases, exhibiting a median SUVmax of 4.5 (range, 2.3-8.8; TBR, 1.7; range, 1.0-4.1). A good correlation between uptake on [\(^{68}\)Ga]Pentixafor and histological derived CXCR4 expression was noted (R = 0.62, P < 0.05). In the 3 patients in whom [\(^{18}\)F]FDG PET/CT was available, [\(^{68}\)Ga]Pentixafor exhibited lower uptake in all lesions. Conclusions: In this cohort of newly diagnosed, treatment-na{\"i}ve patients with solid malignancies, CXCR4 expression as detected by [\(^{68}\)Ga]Pentixafor-PET/CT and immunohistochemistry was rather moderate. Thus, CXCR4-directed imaging may not play a major role in the management of solid tumors in the majority of patients.}, language = {en} } @article{WernerOrdonezSanchezBautistaetal.2019, author = {Werner, Rudolf A. and Ordonez, Alvaro A. and Sanchez-Bautista, Julian and Marcus, Charles and Lapa, Constantin and Rowe, Steven P. and Pomper, Martin G. and Leal, Jeffrey P. and Lodge, Martin A. and Javadi, Mehrbod S. and Jain, Sanjay K. and Higuchi, Takahiro}, title = {Novel functional renal PET imaging with 18F-FDS in human subjects}, series = {Clinical Nuclear Medicine}, volume = {44}, journal = {Clinical Nuclear Medicine}, number = {5}, issn = {0363-9762}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174634}, pages = {410-411}, year = {2019}, abstract = {The novel PET probe 2-deoxy-2-18F-fluoro-D-sorbitol (18F-FDS) has demonstrated favorable renal kinetics in animals. We aimed to elucidate its imaging properties in two human volunteers. 18F-FDS was produced by a simple one-step reduction from 18F-FDG. On dynamic renal PET, the cortex was delineated and activity gradually transited in the parenchyma, followed by radiotracer excretion. No adverse effects were reported. Given the higher spatiotemporal resolution of PET relative to conventional scintigraphy, 18F-FDS PET offers a more thorough evaluation of human renal kinetics. Due to its simple production from 18F-FDG, 18F-FDS is virtually available at any PET facility with radiochemistry infrastructure.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerWakabayashiChenetal.2019, author = {Werner, Rudolf A. and Wakabayashi, Hiroshi and Chen, Xinyu and Hayakawa, Nobuyuki and Lapa, Constantin and Rowe, Steven P. and Javadi, Mehrbod S. and Robinson, Simon and Higuchi, Takahiro}, title = {Ventricular distribution pattern of the novel sympathetic nerve PET radiotracer \(^{18}\)F-LMI1195 in Rabbit Hearts}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-53596-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202707}, pages = {17026}, year = {2019}, abstract = {We aimed to determine a detailed regional ventricular distribution pattern of the novel cardiac nerve PET radiotracer \(^{18}\)F-LMI1195 in healthy rabbits. Ex-vivo high resolution autoradiographic imaging was conducted to identify accurate ventricular distribution of \(^{18}\)F-LMI1195. In healthy rabbits, \(^{18}\)F-LMI1195 was administered followed by the reference perfusion marker \(^{201}\)Tl for a dual-radiotracer analysis. After 20 min of \(^{18}\)F-LMI1195 distribution time, the rabbits were euthanized, the hearts were extracted, frozen, and cut into 20-μm short axis slices. Subsequently, the short axis sections were exposed to a phosphor imaging plate to determine \(^{18}\)F-LMI1195 distribution (exposure for 3 h). After complete \(^{18}\)F decay, sections were re-exposed to determine 201Tl distribution (exposure for 7 days). For quantitative analysis, segmental regions of Interest (ROIs) were divided into four left ventricular (LV) and a right ventricular (RV) segment on mid-ventricular short axis sections. Subendocardial, mid-portion, and subepicardial ROIs were placed on the LV lateral wall. \(^{18}\)F-LMI1195 distribution was almost homogeneous throughout the LV wall without any significant differences in all four LV ROIs (anterior, posterior, septal and lateral wall, 99 ± 2, 94 ± 5, 94 ± 4 and 97 ± 3\%LV, respectively, n.s.). Subepicardial \(^{201}\)Tl uptake was significantly lower compared to the subendocardial portion (subendocardial, mid-portion, and subepicardial activity: 90 ± 3, 96 ± 2 and *80 ± 5\%LV, respectively, *p < 0.01 vs. mid-portion). This was in contradistinction to the transmural wall profile of \(^{18}\)F-LMI1195 (90 ± 4, 96 ± 5 and 84 ± 4\%LV, n.s.). A slight but significant discrepant transmural radiotracer distribution pattern of \(^{201}\)Tl in comparison to \(^{18}\)F-LMI1195 may be a reflection of physiological sympathetic innervation and perfusion in rabbit hearts.}, language = {en} } @article{WernerSchmidHiguchietal.2018, author = {Werner, Rudolf and Schmid, Jan-Stefan and Higuchi, Takahiro and Javadi, Mehrbod S. and Rowe, Steven P. and M{\"a}rkl, Bruno and Aulmann, Christoph and Fassnacht, Martin and Kroiß, Matthias and Reiners, Christoph and Buck, Andreas and Kreissl, Michael and Lapa, Constantin}, title = {Predictive value of \(^{18}\)F-FDG PET in patients with advanced medullary thyroid carcinoma treated with vandetanib}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.117.199778}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161256}, year = {2018}, abstract = {Introduction: Therapeutic options in advanced medullary thyroid carcinoma (MTC) have markedly improved since the introduction of tyrosine kinase inhibitors (TKI). We aimed to assess the role of metabolic imaging using 2-deoxy-2-(\(^{18}\)F)fluoro-D-glucose (\(^{18}\)F-FDG) positron emission tomography/computed tomography (PET/CT) shortly before and 3 months after initiation of TKI treatment. Methods: Eighteen patients with advanced and progressive MTC scheduled for vandetanib treatment underwent baseline \(^{18}\)F-FDG PET/CT prior to and 3 months after TKI treatment initiation. During follow-up, CT scans were performed every 3 months and analyzed according to Response Evaluation Criteria In Solid Tumors (RECIST). The predictive value for estimating progression-free (PFS) and overall survival (OS) was examined by investigating \(^{18}\)F-FDG mean/maximum standardized uptake values (SUVmean/max) of the metabolically most active lesion as well as by analyzing clinical parameters (tumor marker doubling times {calcitonin, carcinoembryonic antigen (CEA)}, prior therapies, RET (rearranged during transfection) mutational status, and disease type). Results: Within a median follow-up of 5.2 years, 9 patients experienced disease progression after a median time interval of 2.1y whereas the remainder had ongoing disease control (n=5 partial response and n=4 stable disease). Eight of the 9 patients with progressive disease died from MTC after a median of 3.5y after TKI initiation. Pre-therapeutic SUVmean >4.0 predicted a significantly shorter PFS (PFS: 1.9y vs. 5.2y; p=0.04). Furthermore, sustained high 18F-FDG uptake at 3 months with a SUVmean>2.8 tended to portend an unfavorable prognosis with a PFS of 1.9y (vs. 3.5y; p=0.3). Prolonged CEA doubling times were significantly correlated with longer PFS (r=0.7) and OS (r=0.76, p<0.01, respectively). None of the other clinical parameters had prognostic significance. Conclusions: Pre-therapeutic \(^{18}\)F-FDG PET/CT holds prognostic information in patients with advanced MTC scheduled for treatment with the TKI vandetanib. Low tumor metabolism of SUVmean < 4.0 prior to treatment predicts longer progression-free survival.}, subject = {Medull{\"a}rer Schilddr{\"u}senkrebs}, language = {en} } @article{WernerWakabyashiChenetal.2018, author = {Werner, Rudolf and Wakabyashi, Hiroshi and Chen, Xinyu and Hirano, Mitsuru and Shinaji, Tetsuya and Lapa, Constantin and Rowe, Steven and Javadi, Mehrbod and Higuchi, Takahiro}, title = {Functional renal imaging with \(^{18}\)F-FDS PET in rat models of renal disorders}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.117.203828}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161279}, year = {2018}, abstract = {Background: Precise regional quantitative assessment of renal function is limited with conventional \(^{99m}\)Tc-labeled renal radiotracers. A recent study reported that the positron emission tomography (PET) radiotracer 2-deoxy-2-(\(^{18}\)F-fluorosorbitol (\(^{18}\)F-FDS) has ideal pharmacokinetics for functional renal imaging. Furthermore, (\(^{18}\)F-FDS is available via simple reduction from routinely used 2-deoxy-2-(\(^{18}\)F-fluoro-D-glucose ((\(^{18}\)F-FDG). We aimed to further investigate the potential of (\(^{18}\)F-FDS PET as a functional renal imaging agent using rat models of kidney diseases. Methods: Two different rat models of renal impairment were investigated: Glycerol induced acute renal failure (ARF) by intramuscular administration of glycerol in hind legs and unilateral ureteral obstruction (UUO) by ligation of the left ureter. 24h after these treatments, dynamic 30 min 18F-FDS PET data were acquired using a dedicated small animal PET system. Urine 18F-FDS radioactivity 30 min after radiotracer injection was measured together with co-injected \(^{99m}\)Tc-diethylenetriaminepentaacetic acid (\(^{99m}\)Tc-DTPA) urine activity. Results: Dynamic PET imaging demonstrated rapid (\(^{18}\)F-FDS accumulation in the renal cortex and rapid radiotracer excretion via kidneys in control healthy rats. On the other hand, significantly delayed renal radiotracer uptake (continuous slow uptake) was observed in ARF rats and UUO-treated kidneys. Measured urine radiotracer concentrations of (\(^{18}\)F-FDS and \(^{99m}\)Tc-DTPA were well correlated (R=0.84, P<0.05). Conclusions: (\(^{18}\)F-FDS PET demonstrated favorable kinetics for functional renal imaging in rat models of kidney diseases. Advantages of high spatiotemporal resolution of PET imaging and simple tracer production could potentially complement or replace conventional renal scintigraphy in select cases and significantly improve the diagnostic performance of renal functional imaging.}, subject = {Nierenfunktionsst{\"o}rung}, language = {en} } @article{WernerKobayashiJavadietal.2018, author = {Werner, Rudolf A. and Kobayashi, Ryohei and Javadi, Mehrbod Som and K{\"o}ck, Zoe and Wakabayashi, Hiroshi and Unterecker, Stefan and Nakajima, Kenichi and Lapa, Constantin and Menke, Andreas and Higuchi, Takahiro}, title = {Impact of Novel Antidepressants on Cardiac Metaiodobenzylguanidine (mIBG) Uptake: Experimental Studies in SK-N-SH Cells and Healthy Rabbits}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.117.206045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161280}, year = {2018}, abstract = {Background: \(^{123}\)I-metaiodobenzylguanidine (mIBG) provides independent prognostic value for risk stratification among heart failure patients, but the use of concomitant medication should not impact its quantitative information. We aimed to evaluate the four most-prescribed antidepressants currently used as a first‑line treatment for patients with major depressive disorder (MDD) and their potential on altering mIBG imaging results. Methods: The inhibition effect of four different types of antidepressants (desipramine, escitalopram, venlafaxine and bupropion) for MDD treatment on \(^{131}\)I-mIBG uptake was assessed by in-vitro cell uptake assays using human neuroblastoma SK-N-SH cells. The half maximal inhibitory concentration (IC50) of tracer uptake was determined from dose-response curves. To evaluate the effects of IV pretreatment with desipramine (1.5 mg/kg) and escitalopram (2.5, 15 mg/kg) on mIBG cardiac uptake, in-vivo planar 123I-mIBG scans in healthy New Zealand White Rabbits were conducted. Results: The IC50 values of desipramine, escitalopram, venlafaxine and bupropion on \(^{131}\)I-mIBG cellular uptake were 11.9 nM, 7.5 μM, 4.92 μM, and 12.9 μM, respectively. At the maximum serum concentration (Cmax, as derived by previous clinical trials), the inhibition rates of 131I-mIBG uptake were 90.6 \% for desipramine, 25.5 \% for venlafaxine, 11.7 \% for bupropion and 0.72 \% for escitalopram. A low inhibition rate for escitalopram in the cell uptake study triggered investigation of an in-vivo rabbit model: with dosage considerably higher than clinical practice, the non-inhibitory effect of escitalopram was confirmed. Furthermore, pretreatment with desipramine led to a marked reduction of cardiac 123I-mIBG uptake. Conclusions: In the present in-vitro binding assay and in-vivo rabbit study, the selective-serotonin reuptake inhibitor escitalopram had no major impact on neuronal cardiac mIBG uptake within therapeutic dose ranges, while other types of first-line antidepressants for MDD treatment led to a significant decrease. These preliminary results warrant further confirmatory clinical trials regarding the reliability of cardiac mIBG imaging, in particular, if the patient's neuropsychiatric status would not tolerate withdrawal of a potentially norepinephrine interfering antidepressant.}, subject = {Antidepressants}, language = {en} } @article{WernerSolnesJavadietal.2018, author = {Werner, Rudolf and Solnes, Lilja and Javadi, Mehrbod and Weich, Alexander and Gorin, Michael and Pienta, Kenneth and Higuchi, Takahiro and Buck, Andreas and Pomper, Martin and Rowe, Steven and Lapa, Constantin}, title = {SSTR-RADS Version 1.0 as a Reporting System for SSTR-PET Imaging and Selection of Potential PRRT Candidates: A Proposed Standardization Framework}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.117.206631}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161298}, year = {2018}, abstract = {Reliable standards and criteria for somatostatin receptor (SSTR) positron emission tomography (PET) are still lacking. We herein propose a structured reporting system on a 5-point scale for SSTR-PET imaging, titled SSTR-RADS version 1.0, which might serve as a standardized assessment for both diagnosis and treatment planning in neuroendocrine tumors (NET). SSTR-RADS could guide the imaging specialist in interpreting SSTR-PET scans, facilitate communication with the referring clinician so that appropriate work-up for equivocal findings is pursued, and serve as a reliable tool for patient selection for planned Peptide Receptor Radionuclide Therapy.}, subject = {Standardisierung}, language = {en} } @article{ChenHiranoWerneretal.2018, author = {Chen, Xinyu and Hirano, Mitsuru and Werner, Rudolf A. and Decker, Michael and Higuchi, Takahiro}, title = {Novel \(^{18}\)F-labeled PET Imaging Agent FV45 targeting the Renin-Angiotensin System}, series = {ACS Omega}, volume = {3}, journal = {ACS Omega}, number = {9}, issn = {2470-1343}, doi = {10.1021/acsomega.8b01885}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167144}, pages = {10460-10470}, year = {2018}, abstract = {Renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure and hormonal balance. Using positron emission tomography (PET) technology, it is possible to monitor the physiological and pathological distribution of angiotensin II type 1 receptors (AT\(_1\)), which reflects the functionality of RAS. A new \(^{18}\)F-labeled PET tracer derived from the clinically used AT\(_1\) antagonist valsartan showing the least possible chemical alteration from the valsartan structure has been designed and synthesized with several strategies, which can be applied for the syntheses of further derivatives. Radioligand binding study showed that the cold reference FV45 (K\(_i\) 14.6 nM) has almost equivalent binding affinity as its lead valsartan (K\(_i\) 11.8 nM) and angiotensin II (K\(_i\) 1.7 nM). Successful radiolabeling of FV45 in a one-pot radiofluorination followed by the deprotection procedure with 21.8 ± 8.5\% radiochemical yield and >99\% radiochemical purity (n = 5) enabled a distribution study in rats and opened a path to straightforward large-scale production. A fast and clear kidney uptake could be observed, and this renal uptake could be selectively blocked by pretreatment with AT\(_1\)-selective antagonist valsartan. Overall, as the first \(^{18}\)F-labeled PET tracer based on a derivation from clinically used drug valsartan with almost identical chemical structure, [\(^{18}\)F]FV45 will be a new tool for assessing the RAS function by visualizing AT\(_i\) receptor distributions and providing further information regarding cardiovascular system malfunction as well as possible applications in inflammation research and cancer diagnosis.}, subject = {Positronen-Emissions-Tomografie}, language = {en} }