@article{HartrampfWeinzierlSeitzetal.2022, author = {Hartrampf, Philipp E. and Weinzierl, Franz-Xaver and Seitz, Anna Katharina and K{\"u}bler, Hubert and Essler, Markus and Buck, Andreas K. and Werner, Rudolf A. and Bundschuh, Ralph A.}, title = {Any decline in prostate-specific antigen levels identifies survivors scheduled for prostate-specific membrane antigen-directed radioligand therapy}, series = {The Prostate}, volume = {82}, journal = {The Prostate}, number = {14}, doi = {10.1002/pros.24414}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318766}, pages = {1406 -- 1412}, year = {2022}, abstract = {Background Prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) is increasingly incorporated in the therapeutic algorithm of patients with metastatic castration-resistant prostate cancer (mCRPC). We aimed to elucidate the predictive performance of early biochemical response for overall survival (OS). Materials and Methods In this bicentric analysis, we included 184 mCRPC patients treated with \(^{177}\)Lu-PSMA RLT. Response to treatment was defined as decrease in prostate-specific antigen (PSA) levels 8 weeks after the first cycle of RLT (any decline or >50\% according to Prostate Cancer Working Group 3). OS of responders and nonresponders was then compared using Kaplan-Meier curves and log-rank comparison. Results A total of 114/184 patients (62.0\%) showed any PSA decline (PSA response >50\%, 55/184 [29.9\%]). For individuals exhibiting a PSA decline >50\%, OS of 19 months was significantly longer relative to nonresponders (13 months; hazard ratio of death [HR] = 0.64, 95\% confidence interval [95\% CI] = 0.44-0.93; p = 0.02). However, the difference was even more pronounced for any PSA decline, with an OS of 19 months in responders, but only 8 months in nonresponders (HR = 0.39, 95\% CI = 0.25-0.60; p < 0.001). Conclusions In mCRPC patients scheduled for RLT, early biochemical response was tightly linked to prolonged survival, irrespective of the magnitude of PSA decline. As such, even in patients with PSA decrease of less than 50\%, RLT should be continued.}, language = {en} } @article{WernerBundschuhBundschuhetal.2018, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Bundschuh, Lena and Javadi, Mehrbod S. and Higuchi, Takahiro and Weich, Alexander and Sheikhbahaei, Sara and Pienta, Kenneth J. and Buck, Andreas K. and Pomper, Martin G. and Gorin, Michael A. and Lapa, Constantin and Rowe, Steven P.}, title = {MI-RADS: Molecular Imaging Reporting and Data Systems - A Generalizable Framework for Targeted Radiotracers with Theranostic Implications}, series = {Annals of Nuclear Medicine}, journal = {Annals of Nuclear Medicine}, issn = {0914-7187}, doi = {10.1007/s12149-018-1291-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166995}, year = {2018}, abstract = {Both prostate-specific membrane antigen (PSMA)- and somatostatin receptor (SSTR)-targeted positron emission tomography (PET) imaging agents for staging and restaging of prostate carcinoma or neuroendocrine tumors, respectively, are seeing rapidly expanding use. In addition to diagnostic applications, both classes of radiotracers can be used to triage patients for theranostic endoradiotherapy. While interpreting PSMA- or SSTR-targeted PET/computed tomography (CT) scans, the reader has to be aware of certain pitfalls. Adding to the complexity of the interpretation of those imaging agents, both normal biodistribution, and also false-positive and -negative findings differ between PSMA- and SSTR-targeted PET radiotracers. Herein summarized under the umbrella term molecular imaging reporting and data systems (MI-RADS), two novel RADS classifications for PSMA- and SSTR-targeted PET imaging are described (PSMA- and SSTR-RADS). Both framework systems may contribute to increase the level of a reader's confidence and to navigate the imaging interpreter through indeterminate lesions, so that appropriate workup for equivocal findings can be pursued. Notably, PSMA- and SSTR-RADS are structured in a reciprocal fashion, i.e. if the reader is familiar with one system, the other system can readily be applied as well. In the present review we will discuss the most common pitfalls on PSMA- and SSTR-targeted PET/CT, briefly introduce PSMA- and SSTR-RADS, and define a future role of the umbrella framework MI-RADS compared to other harmonization systems.}, subject = {Positronen-Emissions-Tomografie}, language = {en} }