@article{LenschowWennmannHendricksetal.2022, author = {Lenschow, Christina and Wennmann, Andreas and Hendricks, Anne and Germer, Christoph-Thomas and Fassnacht, Martin and Buck, Andreas and Werner, Rudolf A. and Plassmeier, Lars and Schlegel, Nicolas}, title = {Questionable value of [\(^{99m}\)Tc]-sestamibi scintigraphy in patients with pHPT and negative ultrasound}, series = {Langenbeck's Archives of Surgery}, volume = {407}, journal = {Langenbeck's Archives of Surgery}, number = {8}, doi = {10.1007/s00423-022-02648-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323926}, pages = {3661-3669}, year = {2022}, abstract = {Purpose A successful focused surgical approach in primary hyperparathyroidism (pHPT) relies on accurate preoperative localization of the parathyroid adenoma (PA). Most often, ultrasound is followed by [\(^{99m}\)Tc]-sestamibi scintigraphy, but the value of this approach is disputed. Here, we evaluated the diagnostic approach in patients with surgically treated pHPT in our center with the aim to further refine preoperative diagnostic procedures. Methods A single-center retrospective analysis of patients with pHPT from 01/2005 to 08/2021 was carried out followed by evaluation of the preoperative imaging modalities to localize PA. The localization of the PA had to be confirmed intraoperatively by the fresh frozen section and significant dropping of the intraoperative parathyroid hormone (PTH) levels. Results From 658 patients diagnosed with pHPT, 30 patients were excluded from the analysis because of surgery for recurrent or persistent disease. Median age of patients was 58.0 (13-93) years and 71\% were female. Neck ultrasound was carried out in 91.7\% and localized a PA in 76.6\%. In 23.4\% (135/576) of the patients, preoperative neck ultrasound did not detect a PA. In this group, [\(^{99m}\)Tc]-sestamibi correctly identified PA in only 25.4\% of patients. In contrast, in the same cohort, the use of [\(^{11}\)C]-methionine or [\(^{11}\)C]-choline PET resulted in the correct identification of PA in 79.4\% of patients (OR 13.23; 95\% CI 5.24-33.56). Conclusion [\(^{11}\)C]-Methionine or [\(^{11}\)C]-choline PET/CT are superior second-line imaging methods to select patients for a focused surgical approach when previous ultrasound failed to identify PA.}, language = {en} } @article{SerflingLapaDreheretal.2022, author = {Serfling, Sebastian E. and Lapa, Constantin and Dreher, Niklas and Hartrampf, Philipp E. and Rowe, Steven P. and Higuchi, Takahiro and Schirbel, Andreas and Weich, Alexander and Hahner, Stefanie and Fassnacht, Martin and Buck, Andreas K. and Werner, Rudolf A.}, title = {Impact of tumor burden on normal organ distribution in patients imaged with CXCR4-targeted [\(^{68}\)Ga]Ga-PentixaFor PET/CT}, series = {Molecular Imaging and Biology}, volume = {24}, journal = {Molecular Imaging and Biology}, number = {4}, doi = {10.1007/s11307-022-01717-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324622}, pages = {659-665}, year = {2022}, abstract = {Background CXCR4-directed positron emission tomography/computed tomography (PET/CT) has been used as a diagnostic tool in patients with solid tumors. We aimed to determine a potential correlation between tumor burden and radiotracer accumulation in normal organs. Methods Ninety patients with histologically proven solid cancers underwent CXCR4-targeted [\(^{68}\)Ga]Ga-PentixaFor PET/CT. Volumes of interest (VOIs) were placed in normal organs (heart, liver, spleen, bone marrow, and kidneys) and tumor lesions. Mean standardized uptake values (SUV\(_{mean}\)) for normal organs were determined. For CXCR4-positive tumor burden, maximum SUV (SUV\(_{max}\)), tumor volume (TV), and fractional tumor activity (FTA, defined as SUV\(_{mean}\) x TV), were calculated. We used a Spearman's rank correlation coefficient (ρ) to derive correlative indices between normal organ uptake and tumor burden. Results Median SUV\(_{mean}\) in unaffected organs was 5.2 for the spleen (range, 2.44 - 10.55), 3.27 for the kidneys (range, 1.52 - 17.4), followed by bone marrow (1.76, range, 0.84 - 3.98), heart (1.66, range, 0.88 - 2.89), and liver (1.28, range, 0.73 - 2.45). No significant correlation between SUV\(_{max}\) in tumor lesions (ρ ≤ 0.189, P ≥ 0.07), TV (ρ ≥ -0.204, P ≥ 0.06) or FTA (ρ ≥ -0.142, P ≥ 0.18) with the investigated organs was found. Conclusions In patients with solid tumors imaged with [\(^{68}\)Ga]Ga-PentixaFor PET/CT, no relevant tumor sink effect was noted. This observation may be of relevance for therapies with radioactive and non-radioactive CXCR4-directed drugs, as with increasing tumor burden, the dose to normal organs may remain unchanged.}, language = {en} } @article{BuckSerflingLindneretal.2022, author = {Buck, Andreas K. and Serfling, Sebastian E. and Lindner, Thomas and H{\"a}nscheid, Heribert and Schirbel, Andreas and Hahner, Stefanie and Fassnacht, Martin and Einsele, Hermann and Werner, Rudolf A.}, title = {CXCR4-targeted theranostics in oncology}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {49}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {12}, doi = {10.1007/s00259-022-05849-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324545}, pages = {4133-4144}, year = {2022}, abstract = {A growing body of literature reports on the upregulation of C-X-C motif chemokine receptor 4 (CXCR4) in a variety of cancer entities, rendering this receptor as suitable target for molecular imaging and endoradiotherapy in a theranostic setting. For instance, the CXCR4-targeting positron emission tomography (PET) agent [\(^{68}\)Ga]PentixaFor has been proven useful for a comprehensive assessment of the current status quo of solid tumors, including adrenocortical carcinoma or small-cell lung cancer. In addition, [\(^{68}\)Ga]PentixaFor has also provided an excellent readout for hematological malignancies, such as multiple myeloma, marginal zone lymphoma, or mantle cell lymphoma. PET-based quantification of the CXCR4 capacities in vivo allows for selecting candidates that would be suitable for treatment using the theranostic equivalent [\(^{177}\)Lu]/[\(^{90}\)Y]PentixaTher. This CXCR4-directed theranostic concept has been used as a conditioning regimen prior to hematopoietic stem cell transplantation and to achieve sufficient anti-lymphoma/-tumor activity in particular for malignant tissues that are highly sensitive to radiation, such as the hematological system. Increasing the safety margin, pretherapeutic dosimetry is routinely performed to determine the optimal activity to enhance therapeutic efficacy and to reduce off-target adverse events. The present review will provide an overview of current applications for CXCR4-directed molecular imaging and will introduce the CXCR4-targeted theranostic concept for advanced hematological malignancies.}, language = {en} }