@article{WeichWernerBucketal.2021, author = {Weich, Alexander and Werner, Rudolf A. and Buck, Andreas K. and Hartrampf, Philipp E. and Serfling, Sebastian E. and Scheurlen, Michael and Wester, Hans-J{\"u}rgen and Meining, Alexander and Kircher, Stefan and Higuchi, Takahiro and Pomper, Martin G. and Rowe, Steven P. and Lapa, Constantin and Kircher, Malte}, title = {CXCR4-Directed PET/CT in Patients with Newly Diagnosed Neuroendocrine Carcinomas}, series = {Diagnostics}, volume = {11}, journal = {Diagnostics}, number = {4}, issn = {2075-4418}, doi = {10.3390/diagnostics11040605}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234231}, year = {2021}, abstract = {We aimed to elucidate the diagnostic potential of the C-X-C motif chemokine receptor 4 (CXCR4)-directed positron emission tomography (PET) tracer \(^{68}\)Ga-Pentixafor in patients with poorly differentiated neuroendocrine carcinomas (NEC), relative to the established reference standard \(^{18}\)F-FDG PET/computed tomography (CT). In our database, we retrospectively identified 11 treatment-na{\"i}ve patients with histologically proven NEC, who underwent \(^{18}\)F-FDG and CXCR4-directed PET/CT for staging and therapy planning. The images were analyzed on a per-patient and per-lesion basis and compared to immunohistochemical staining (IHC) of CXCR4 from PET-guided biopsies. \(^{68}\)Ga-Pentixafor visualized tumor lesions in 10/11 subjects, while \(^{18}\)F-FDG revealed sites of disease in all 11 patients. Although weak to moderate CXCR4 expression could be corroborated by IHC in 10/11 cases, \(^{18}\)F-FDG PET/CT detected significantly more tumor lesions (102 vs. 42; total lesions, n = 107; p < 0.001). Semi-quantitative analysis revealed markedly higher 18F-FDG uptake as compared to \(^{68}\)Ga-Pentixafor (maximum and mean standardized uptake values (SUV) and tumor-to-background ratios (TBR) of cancerous lesions, SUVmax: 12.8 ± 9.8 vs. 5.2 ± 3.7; SUVmean: 7.4 ± 5.4 vs. 3.1 ± 3.2, p < 0.001; and, TBR 7.2 ± 7.9 vs. 3.4 ± 3.0, p < 0.001). Non-invasive imaging of CXCR4 expression in NEC is inferior to the reference standard \(^{18}\)F-FDG PET/CT.}, language = {en} } @article{MatsusakaChenAriasLozaetal.2022, author = {Matsusaka, Yohji and Chen, Xinyu and Arias-Loza, Paula and Werner, Rudolf A. and Nose, Naoko and Sasaki, Takanori and Rowe, Steven P. and Pomper, Martin G. and Lapa, Constantin and Higuchi, Takahiro}, title = {In Vivo Functional Assessment of Sodium-Glucose Cotransporters (SGLTs) Using [\(^{18}\)F]Me4FDG PET in Rats}, series = {Molecular Imaging}, volume = {2022}, journal = {Molecular Imaging}, doi = {10.1155/2022/4635171}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300708}, year = {2022}, abstract = {Background. Mediating glucose absorption in the small intestine and renal clearance, sodium glucose cotransporters (SGLTs) have emerged as an attractive therapeutic target in diabetic patients. A substantial fraction of patients, however, only achieve inadequate glycemic control. Thus, we aimed to assess the potential of the SGLT-targeting PET radiotracer alpha-methyl-4-deoxy-4-[\(^{18}\)F]fluoro-D-glucopyranoside ([\(^{18}\)F]Me4FDG) as a noninvasive intestinal and renal biomarker of SGLT-mediated glucose transport. Methods. We investigated healthy rats using a dedicated small animal PET system. Dynamic imaging was conducted after administration of the reference radiotracer 2-deoxy-2-[\(^{18}\)F]fluoro-D-glucose ([\(^{18}\)F]FDG), or the SGLT-targeting agent, [\(^{18}\)F]Me4FDG either directly into the digestive tract (for assessing intestinal absorption) or via the tail vein (for evaluating kidney excretion). To confirm the specificity of [18F]Me4FDG and responsiveness to treatment, a subset of animals was also pretreated with the SGLT inhibitor phlorizin. In this regard, an intraintestinal route of administration was used to assess tracer absorption in the digestive tract, while for renal assessment, phlorizin was injected intravenously (IV). Results. Serving as reference, intestinal administration of [\(^{18}\)F]FDG led to slow absorption with retention of \% of administered radioactivity at 15 min. [\(^{18}\)F]Me4FDG, however, was rapidly absorbed into the blood and cleared from the intestine within 15 min, leading to markedly lower tracer retention of \% (). Intraintestinal phlorizin led to marked increase of [\(^{18}\)F]Me4FDG uptake (15 min, \%; vs. untreated controls), supporting the notion that this PET agent can measure adequate SGLT inhibition in the digestive tract. In the kidneys, radiotracer was also sensitive to SGLT inhibition. After IV injection, [\(^{18}\)F]Me4FDG reabsorption in the renal cortex was significantly suppressed by phlorizin when compared to untreated animals (\%ID/g at 60 min, vs. untreated controls, ; ). Conclusion. As a noninvasive read-out of the concurrent SGLT expression in both the digestive tract and the renal cortex, [\(^{18}\)F]Me4FDG PET may serve as a surrogate marker for treatment response to SGLT inhibition. As such, [\(^{18}\)F]Me4FDG may enable improvement in glycemic control in diabetes by PET-based monitoring strategies.}, language = {en} } @article{KosmalaSerflingDreheretal.2022, author = {Kosmala, Aleksander and Serfling, Sebastian E. and Dreher, Niklas and Lindner, Thomas and Schirbel, Andreas and Lapa, Constantin and Higuchi, Takahiro and Buck, Andreas K. and Weich, Alexander and Werner, Rudolf A.}, title = {Associations between normal organs and tumor burden in patients imaged with fibroblast activation protein inhibitor-directed positron emission tomography}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {11}, issn = {2072-6694}, doi = {10.3390/cancers14112609}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275154}, year = {2022}, abstract = {(1) Background: We aimed to quantitatively investigate [\(^{68}\)Ga]Ga-FAPI-04 uptake in normal organs and to assess a relationship with the extent of FAPI-avid tumor burden. (2) Methods: In this single-center retrospective analysis, thirty-four patients with solid cancers underwent a total of 40 [\(^{68}\)Ga]Ga-FAPI-04 PET/CT scans. Mean standardized uptake values (SUV\(_{mean}\)) for normal organs were established by placing volumes of interest (VOIs) in the heart, liver, spleen, pancreas, kidneys, and bone marrow. Total tumor burden was determined by manual segmentation of tumor lesions with increased uptake. For tumor burden, quantitative assessment included maximum SUV (SUV\(_{max}\)), tumor volume (TV), and fractional tumor activity (FTA = TV × SUV\(_{mean}\)). Associations between uptake in normal organs and tumor burden were investigated by applying Spearman's rank correlation coefficient. (3) Results: Median SUV\(_{mean}\) values were 2.15 in the pancreas (range, 1.05-9.91), 1.42 in the right (range, 0.57-3.06) and 1.41 in the left kidney (range, 0.73-2.97), 1.2 in the heart (range, 0.46-2.59), 0.86 in the spleen (range, 0.55-1.58), 0.65 in the liver (range, 0.31-2.11), and 0.57 in the bone marrow (range, 0.26-0.94). We observed a trend towards significance for uptake in the myocardium and tumor-derived SUV\(_{max}\) (ρ = 0.29, p = 0.07) and TV (ρ = -0.30, p = 0.06). No significant correlation was achieved for any of the other organs: SUV\(_{max}\) (ρ ≤ 0.1, p ≥ 0.42), TV (ρ ≤ 0.11, p ≥ 0.43), and FTA (ρ ≤ 0.14, p ≥ 0.38). In a sub-analysis exclusively investigating patients with high tumor burden, significant correlations of myocardial uptake with tumor SUV\(_{max}\) (ρ = 0.44; p = 0.03) and tumor-derived FTA with liver uptake (ρ = 0.47; p = 0.02) were recorded. (4) Conclusions: In this proof-of-concept study, quantification of [\(^{68}\)Ga]Ga-FAPI-04 PET showed no significant correlation between normal organs and tumor burden, except for a trend in the myocardium. Those preliminary findings may trigger future studies to determine possible implications for treatment with radioactive FAP-targeted drugs, as higher tumor load or uptake may not lead to decreased doses in the majority of normal organs.}, language = {en} } @article{WernerWakabayashiBaueretal.2018, author = {Werner, Rudolf and Wakabayashi, Hiroshi and Bauer, Jochen and Sch{\"u}tz, Claudia and Zechmeister, Christina and Hayakawa, Nobuyuki and Javadi, Mehrbod S. and Lapa, Constantin and Jahns, Roland and Erg{\"u}n, S{\"u}leyman and Jahns, Valerie and Higuchi, Takahiro}, title = {Longitudinal \(^{18}\)F-FDG PET imaging in a Rat Model of Autoimmune Myocarditis}, series = {European Heart Journal Cardiovascular Imaging}, journal = {European Heart Journal Cardiovascular Imaging}, issn = {2047-2404}, doi = {10.1093/ehjci/jey119}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165601}, pages = {1-8}, year = {2018}, abstract = {Aims: Although mortality rate is very high, diagnosis of acute myocarditis remains challenging with conventional tests. We aimed to elucidate the potential role of longitudinal 2-Deoxy-2-\(^{18}\)F-fluoro-D-glucose (\(^{18}\)F-FDG) positron emission tomography (PET) inflammation monitoring in a rat model of experimental autoimmune myocarditis. Methods and results: Autoimmune myocarditis was induced in Lewis rats by immunizing with porcine cardiac myosin emulsified in complete Freund's adjuvant. Time course of disease was assessed by longitudinal \(^{18}\)F-FDG PET imaging. A correlative analysis between in- and ex vivo \(^{18}\)F-FDG signalling and macrophage infiltration using CD68 staining was conducted. Finally, immunohistochemistry analysis of the cell-adhesion markers CD34 and CD44 was performed at different disease stages determined by longitudinal \(^{18}\)F-FDG PET imaging. After immunization, myocarditis rats revealed a temporal increase in 18F-FDG uptake (peaked at week 3), which was followed by a rapid decline thereafter. Localization of CD68 positive cells was well correlated with in vivo \(^{18}\)F-FDG PET signalling (R\(^2\) = 0.92) as well as with ex vivo 18F-FDG autoradiography (R\(^2\) = 0.9, P < 0.001, respectively). CD44 positivity was primarily observed at tissue samples obtained at acute phase (i.e. at peak 18F-FDG uptake), while CD34-positive staining areas were predominantly identified in samples harvested at both sub-acute and chronic phases (i.e. at \(^{18}\)F-FDG decrease). Conclusion: \(^{18}\)F-FDG PET imaging can provide non-invasive serial monitoring of cardiac inflammation in a rat model of acute myocarditis.}, subject = {Myokarditis}, language = {en} } @article{WernerChenMayaetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Maya, Yoshifumi and Eissler, Christoph and Hirano, Mitsuru and Nose, Naoko and Wakabayashi, Hiroshi and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {The Impact of Ageing on 11C-Hydroxyephedrine Uptake in the Rat Heart}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {11120}, issn = {2281-5872}, doi = {10.1038/s41598-018-29509-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164826}, year = {2018}, abstract = {We aimed to explore the impact of ageing on 11C-Hydroxyephedrine (11C-HED) uptake in the healthy rat heart in a longitudinal setting. To investigate a potential cold mass effect, the influence of specific activity on cardiac 11C-HED uptake was evaluated: 11C-HED was synthesized by N-methylation of (-)-metaraminol as the free base (radiochemical purity >95\%) and a wide range of specific activities (0.2-141.9 GBq/μmol) were prepared. \(^{11}\)C-HED (48.7±9.7MBq, ranged 0.2-60.4μg/kg cold mass) was injected in healthy Wistar Rats. Dynamic 23-frame PET images were obtained over 30 min. Time activity curves were generated for the blood input function and myocardial tissue. Cardiac 11C-HED retention index (\%/min) was calculated as myocardial tissue activity at 20-30 min divided by the integral of the blood activity curves. Additionally, the impact of ageing on myocardial 11CHED uptake was investigated longitudinally by PET studies at different ages of healthy Wistar Rats. A dose-dependent reduction of cardiac 11C-HED uptake was observed: The estimated retention index as a marker of norepinephrine function decreased at a lower specific activity (higher amount of cold mass). This observed high affinity of 11C-HED to the neural norepinephrine transporter triggered a subsequent study: In a longitudinal setting, the 11C-HED retention index decreased with increasing age. An age-related decline of cardiac sympathetic innervation could be demonstrated. The herein observed cold mass effect might increase in succeeding scans and therefore, 11C-HED microPET studies should be planned with extreme caution if one single radiosynthesis is scheduled for multiple animals.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerSheikhbahaeiJonesetal.2017, author = {Werner, Rudolf A. and Sheikhbahaei, Sara and Jones, Krystyna M. and Javadi, Mehrbod S. and Solnes, Lilja B. and Ross, Ashley E. and Allaf, Mohamad E. and Pienta, Kenneth J. and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro and Pomper, Martin G. and Gorin, Micheal A. and Rowe, Steven P.}, title = {Patterns of uptake of prostate-specific membrane antigen (PSMA)-targeted \(^{18}\)F-DCFPyL in peripheral ganglia}, series = {Annals of Nuclear Medicine}, volume = {31}, journal = {Annals of Nuclear Medicine}, number = {9}, issn = {0914-7187}, doi = {10.1007/s12149-017-1201-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166971}, pages = {696-702}, year = {2017}, abstract = {Objective: Radiotracers targeting prostate-specific membrane antigen (PSMA) have increasingly been recognized as showing uptake in a number of normal structures, anatomic variants, and non-prostate-cancer pathologies. We aimed to explore the frequency and degree of uptake in peripheral ganglia in patients undergoing PET with the PSMA-targeted agent \(^{18}\)F-DCFPyL. Methods: A total of 98 patients who underwent \(^{18}\)F-DCFPyL PET/CT imaging were retrospectively analyzed. This included 76 men with prostate cancer (PCa) and 22 patients with renal cell carcinoma (RCC; 13 men, 9 women). Scans were evaluated for uptake in the cervical, stellate, celiac, lumbar and sacral ganglia. Maximum standardized uptake value corrected to body weight (SUV\(_{max}\)), and maximum standardized uptake value corrected to lean body mass (SUL\(_{max}\)) were recorded for all ganglia with visible uptake above background. Ganglia-to-background ratios were calculated by dividing the SUV\(_{max}\) and SUL\(_{max}\) values by the mean uptake in the ascending aorta (Aortamean) and the right gluteus muscle (Gluteusmean). Results: Overall, 95 of 98 (96.9\%) patients demonstrated uptake in at least one of the evaluated peripheral ganglia. With regard to the PCa cohort, the most frequent sites of radiotracer accumulation were lumbar ganglia (55/76, 72.4\%), followed by the cervical ganglia (51/76, 67.1\%). Bilateral uptake was found in the majority of cases [lumbar 44/55 (80\%) and cervical 30/51 (58.8\%)]. Additionally, discernible radiotracer uptake was recorded in 50/76 (65.8\%) of the analyzed stellate ganglia and in 45/76 (59.2\%) of the celiac ganglia, whereas only 5/76 (6.6\%) of the sacral ganglia demonstrated \(^{18}\)F-DCFPyL accumulation. Similar findings were observed for patients with RCC, with the most frequent locations of radiotracer uptake in both the lumbar (20/22, 90.9\%) and cervical ganglia (19/ 22, 86.4\%). No laterality preference was found in mean PSMA-ligand uptake for either the PCa or RCC cohorts. Conclusion: As PSMA-targeted agents become more widely disseminated, the patterns of uptake in structures that are not directly relevant to patients' cancers must be understood. This is the first systematic evaluation of the uptake of \(^{18}\)F-DCFPyL in ganglia demonstrating a general trend with a descending frequency of radiotracer accumulation in lumbar, cervical, stellate, celiac, and sacral ganglia. The underlying biology that leads to variability of PSMA-targeted radiotracers in peripheral ganglia is not currently understood, but may provide opportunities for future research.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @unpublished{WernerAndreeJavadietal.2018, author = {Werner, Rudolf A. and Andree, Christian and Javadi, Mehrbod S. and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro and Pomper, Martin G. and Gorin, Michael A. and Rowe, Steven P. and Pienta, Kenneth J.}, title = {A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging}, series = {Urology - The Gold Journal}, journal = {Urology - The Gold Journal}, issn = {0090-4295}, doi = {10.1016/j.urology.2018.03.030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161103}, year = {2018}, abstract = {No abstract available.}, subject = {Virchow Node}, language = {en} } @article{WernerAndreeJavadietal.2018, author = {Werner, Rudolf A. and Andree, Christian and Javadi, Mehrbod S. and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro and Pomper, Martin G. and Gorin, Michael A. and Rowe, Steven P. and Pienta, Kenneth J.}, title = {A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging}, series = {Urology - The Gold Journal}, volume = {117}, journal = {Urology - The Gold Journal}, issn = {0090-4295}, doi = {10.1016/j.urology.2018.03.030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164632}, pages = {18-21}, year = {2018}, abstract = {No abstract available.}, language = {en} } @article{EisslerWernerAriasLozaetal.2021, author = {Eissler, Cristoph and Werner, Rudolf A. and Arias-Loza, Paula and Nose, Naoko and Chen, Xinyu and Pomper, Martin G. and Rowe, Steven P. and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro}, title = {The number of frames on ECG-gated \(^{18}\)F-FDG small animal PET has a significant impact on LV systolic and diastolic functional parameters}, series = {Molecular Imaging}, volume = {2021}, journal = {Molecular Imaging}, doi = {10.1155/2021/4629459}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265778}, year = {2021}, abstract = {Objectives. This study is aimed at investigating the impact of frame numbers in preclinical electrocardiogram- (ECG-) gated \(^{18}\)F-fluorodeoxyglucose (\(^{18}\)F-FDG) positron emission tomography (PET) on systolic and diastolic left ventricular (LV) parameters in rats. Methods. \(^{18}\)F-FDG PET imaging using a dedicated small animal PET system with list mode data acquisition and continuous ECG recording was performed in diabetic and control rats. The list-mode data was sorted and reconstructed with different numbers of frames (4, 8, 12, and 16) per cardiac cycle into tomographic images. Using an automatic ventricular edge detection software, left ventricular (LV) functional parameters, including ejection fraction (EF), end-diastolic (EDV), and end-systolic volume (ESV), were calculated. Diastolic variables (time to peak filling (TPF), first third mean filling rate (1/3 FR), and peak filling rate (PFR)) were also assessed. Results. Significant differences in multiple parameters were observed among the reconstructions with different frames per cardiac cycle. EDV significantly increased by numbers of frames (353.8 \& PLUSMN; 57.7 mu l*, 380.8 \& PLUSMN; 57.2 mu l*, 398.0 \& PLUSMN; 63.1 mu l*, and 444.8 \& PLUSMN; 75.3 mu l at 4, 8, 12, and 16 frames, respectively; *P < 0.0001 vs. 16 frames), while systolic (EF) and diastolic (TPF, 1/3 FR and PFR) parameters were not significantly different between 12 and 16 frames. In addition, significant differences between diabetic and control animals in 1/3 FR and PFR in 16 frames per cardiac cycle were observed (P < 0.005), but not for 4, 8, and 12 frames. Conclusions. Using ECG-gated PET in rats, measurements of cardiac function are significantly affected by the frames per cardiac cycle. Therefore, if you are going to compare those functional parameters, a consistent number of frames should be used.}, language = {en} } @article{ChenWernerJavadietal.2015, author = {Chen, Xinyu and Werner, Rudolf A. and Javadi, Mehrbod S. and Maya, Yoshifumi and Decker, Michael and Lapa, Constantin and Herrmann, Ken and Higuchi, Takahiro}, title = {Radionuclide imaging of neurohormonal system of the heart}, series = {Theranostics}, volume = {5}, journal = {Theranostics}, number = {6}, doi = {10.7150/thno.10900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149205}, pages = {545-558}, year = {2015}, abstract = {Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included.}, language = {en} }