@article{WernerChenHiranoetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Hirano, Mitsuru and Rowe, Steven P. and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {SPECT vs. PET in Cardiac Innervation Imaging: Clash of the Titans}, series = {Clinical and Translational Imaging}, journal = {Clinical and Translational Imaging}, issn = {2281-5872}, doi = {10.1007/s40336-018-0289-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163628}, year = {2018}, abstract = {Purpose: We aim to provide an overview of the conventional single photon emission computed tomography (SPECT) and emerging positron emission tomography (PET) catecholamine analogue tracers for assessing myocardial nerve integrity, in particular focusing on \(^{18}\)F-labeled tracers. Results: Increasingly, the cardiac sympathetic nervous system (SNS) is being studied by non-invasive molecular imaging approaches. Forming the backbone of myocardial SNS imaging, the norepinephrine (NE) transporter at the sympathetic nerve terminal plays a crucial role for visualizing denervated myocardium: in particular, the single-photon-emitting NE analogue \(^{123}\)I-meta-Iodobenzylguanidine (\(^{123}\)I-mIBG) has demonstrated favorable results in the identification of patients at a high risk for cardiac death. However, cardiac neuronal PET agents offer several advantages inlcuding improved spatio-temporal resolution and intrinsic quantifiability. Compared to their \(^{11}\)C-labeled counterparts with a short half-life (20.4 min), novel \(^{18}\)F-labeled PET imaging agents to assess myocardial nerve integrity have the potential to revolutionize the field of SNS molecular imaging: The longer half-life of \(^{18}\)F (109.8 min) allows for more flexibility in the study design and delivery from central cyclotron facilities to smaller hospitals may lead to further cost reduction. A great deal of progress has been made by the first in-human studies of such \(^{18}\)F-labeled SNS imaging agents. Moreover, dedicated animal platforms open avenues for further insights into the handling of radiolabeled catecholamine analogues at the sympathetic nerve terminal. Conclusions: \(^{18}\)F-labeled imaging agents demonstrate key properties for mapping cardiac sympathetic nerve integrity and might outperform current SPECT-based or \(^{11}\)C-labeled tracers in the long run.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{NoseWernerUedaetal.2018, author = {Nose, Naoko and Werner, Rudolf A. and Ueda, Yuichiro and G{\"u}nther, Katharina and Lapa, Constantin and Javadi, Mehrbod S. and Fukushima, Kazuhito and Edenhofer, Frank and Higuchi, Takahiro}, title = {Metabolic substrate shift in human induced pluripotent stem cells during cardiac differentiation: Functional assessment using in vitro radionuclide uptake assay}, series = {International Journal of Cardiology}, volume = {269}, journal = {International Journal of Cardiology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170699}, pages = {229-234}, year = {2018}, abstract = {BACKGROUND: Recent developments in cellular reprogramming technology enable the production of virtually unlimited numbers of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Although hiPSC-CM share various characteristic hallmarks with endogenous cardiomyocytes, it remains a question as to what extent metabolic characteristics are equivalent to mature mammalian cardiomyocytes. Here we set out to functionally characterize the metabolic status of hiPSC-CM in vitro by employing a radionuclide tracer uptake assay. MATERIAL AND METHODS: Cardiac differentiation of hiPSC was induced using a combination of well-orchestrated extrinsic stimuli such as WNT activation (by CHIR99021) and BMP signalling followed by WNT inhibition and lactate based cardiomyocyte enrichment. For characterization of metabolic substrates, dual tracer uptake studies were performed with \(^{18}\)F‑2‑fluoro‑2‑deoxy‑d‑glucose (\(^{18}\)F-FDG) and \(^{125}\)I‑β‑methyl‑iodophenyl‑pentadecanoic acid (\(^{125}\)I-BMIPP) as transport markers of glucose and fatty acids, respectively. RESULTS: After cardiac differentiation of hiPSCs, in vitro tracer uptake assays confirmed metabolic substrate shift from glucose to fatty acids that was comparable to those observed in native isolated human cardiomyocytes. Immunostaining further confirmed expression of fatty acid transport and binding proteins on hiPSC-CM. CONCLUSIONS: During in vitro cardiac maturation, we observed a metabolic shift to fatty acids, which are known as a main energy source of mammalian hearts, suggesting hi-PSC-CM as a potential functional phenotype to investigate alteration of cardiac metabolism in cardiac diseases. Results also highlight the use of available clinical nuclear medicine tracers as functional assays in stem cell research for improved generation of autologous differentiated cells for numerous biomedical applications.}, subject = {Stammzelle}, language = {en} } @article{ThomasFiebigKuhnetal.2023, author = {Thomas, Sarah and Fiebig, Juliane E. and Kuhn, Eva-Maria and Mayer, Dominik S. and Filbeck, Sebastian and Schmitz, Werner and Krischke, Markus and Gropp, Roswitha and Mueller, Thomas D.}, title = {Design of glycoengineered IL-4 antagonists employing chemical and biosynthetic glycosylation}, series = {ACS Omega}, volume = {8}, journal = {ACS Omega}, number = {28}, issn = {2470-1343}, doi = {10.1021/acsomega.3c00726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350278}, pages = {24841-24852}, year = {2023}, abstract = {Interleukin-4 (IL-4) plays a key role in atopic diseases. It coordinates T-helper cell differentiation to subtype 2, thereby directing defense toward humoral immunity. Together with Interleukin-13, IL-4 further induces immunoglobulin class switch to IgE. Antibodies of this type activate mast cells and basophilic and eosinophilic granulocytes, which release pro-inflammatory mediators accounting for the typical symptoms of atopic diseases. IL-4 and IL-13 are thus major targets for pharmaceutical intervention strategies to treat atopic diseases. Besides neutralizing antibodies against IL-4, IL-13, or its receptors, IL-4 antagonists can present valuable alternatives. Pitrakinra, an Escherichia coli-derived IL-4 antagonist, has been evaluated in clinical trials for asthma treatment in the past; however, deficits such as short serum lifetime and potential immunogenicity among others stopped further development. To overcome such deficits, PEGylation of therapeutically important proteins has been used to increase the lifetime and proteolytic stability. As an alternative, glycoengineering is an emerging strategy used to improve pharmacokinetics of protein therapeutics. In this study, we have established different strategies to attach glycan moieties to defined positions in IL-4. Different chemical attachment strategies employing thiol chemistry were used to attach a glucose molecule at amino acid position 121, thereby converting IL-4 into a highly effective antagonist. To enhance the proteolytic stability of this IL-4 antagonist, additional glycan structures were introduced by glycoengineering utilizing eucaryotic expression. IL-4 antagonists with a combination of chemical and biosynthetic glycoengineering could be useful as therapeutic alternatives to IL-4 neutralizing antibodies already used to treat atopic diseases.}, language = {en} }