@article{JurowichOttoRikkalaetal.2015, author = {Jurowich, Christian Ferdinand and Otto, Christoph and Rikkala, Prashanth Reddy and Wagner, Nicole and Vrhovac, Ivana and Sabolić, Ivan and Germer, Christoph-Thomas and Koepsell, Hermann}, title = {Ileal interposition in rats with experimental type 2 like diabetes improves glycemic control independently of glucose absorption}, series = {Journal of Diabetes Research}, volume = {2015}, journal = {Journal of Diabetes Research}, number = {490365}, doi = {10.1155/2015/490365}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149166}, year = {2015}, abstract = {Bariatric operations in obese patients with type 2 diabetes often improve diabetes before weight loss is observed. In patients mainly Roux-en-Y-gastric bypass with partial stomach resection is performed. Duodenojejunal bypass (DJB) and ileal interposition (IIP) are employed in animal experiments. Due to increased glucose exposition of L-cells located in distal ileum, all bariatric surgery procedures lead to higher secretion of antidiabetic glucagon like peptide-1 (GLP-1) after glucose gavage. After DJB also downregulation of Na\(^{+}\)-D-glucose cotransporter SGLT1 was observed. This suggested a direct contribution of decreased glucose absorption to the antidiabetic effect of bariatric surgery. To investigate whether glucose absorption is also decreased after IIP, we induced diabetes with decreased glucose tolerance and insulin sensitivity in male rats and investigated effects of IIP on diabetes and SGLT1. After IIP, we observed weight-independent improvement of glucose tolerance, increased insulin sensitivity, and increased plasma GLP-1 after glucose gavage. The interposed ileum was increased in diameter and showed increased length of villi, hyperplasia of the epithelial layer, and increased number of L-cells. The amount of SGLT1-mediated glucose uptake in interposed ileum was increased 2-fold reaching the same level as in jejunum. Thus, improvement of glycemic control by bariatric surgery does not require decreased glucose absorption.}, language = {en} } @article{OttoFriedrichMadunićetal.2020, author = {Otto, Christoph and Friedrich, Alexandra and Madunić, Ivana Vrhovac and Baumeier, Christian and Schwenk, Robert W. and Karaica, Dean and Germer, Christoph-Thomas and Sch{\"u}rmann, Annette and Sabolić, Ivan and Koepsell, Hermann, Hermann}, title = {Antidiabetic Effects of a Tripeptide That Decreases Abundance of Na\(^+\)-D-glucose Cotransporter SGLT1 in the Brush-Border Membrane of the Small Intestine}, series = {ACS Omega}, volume = {5}, journal = {ACS Omega}, number = {45}, doi = {10.1021/acsomega.0c03844}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230654}, pages = {29127-29139}, year = {2020}, abstract = {In enterocytes, protein RS1 (RSC1A1) mediates an increase of glucose absorption after ingestion of glucose-rich food via upregulation of Na+-D-glucose cotransporter SGLT1 in the brush-border membrane (BBM). Whereas RS1 decelerates the exocytotic pathway of vesicles containing SGLT1 at low glucose levels between meals, RS1-mediated deceleration is relieved after ingestion of glucose-rich food. Regulation of SGLT1 is mediated by RS1 domain RS1-Reg, in which Gln-Ser-Pro (QSP) is effective. In contrast to QSP and RS1-Reg, Gln-Glu-Pro (QEP) and RS1-Reg with a serine to glutamate exchange in the QSP motif downregulate the abundance of SGLT1 in the BBM at high intracellular glucose concentrations by about 50\%. We investigated whether oral application of QEP improves diabetes in db/db mice and affects the induction of diabetes in New Zealand obese (NZO) mice under glucolipotoxic conditions. After 6-day administration of drinking water containing 5 mM QEP to db/db mice, fasting glucose was decreased, increase of blood glucose in the oral glucose tolerance test was blunted, and insulin sensitivity was increased. When QEP was added for several days to a high fat/high carbohydrate diet that induced diabetes in NZO mice, the increase of random plasma glucose was prevented, accompanied by lower plasma insulin levels. QEP is considered a lead compound for development of new antidiabetic drugs with more rapid cellular uptake. In contrast to SGLT1 inhibitors, QEP-based drugs may be applied in combination with insulin for the treatment of type 1 and type 2 diabetes, decreasing the required insulin amount, and thereby may reduce the risk of hypoglycemia.}, language = {en} } @article{BhavsarSinghSharmaetal.2016, author = {Bhavsar, Shefalee K. and Singh, Yogesh and Sharma, Piyush and Khairnar, Vishal and Hosseinzadeh, Zohreh and Zhang, Shaqiu and Palmada, Monica and Sabolic, Ivan and Koepsell, Hermann and Lang, Karl S. and Lang, Philipp A. and Lang, Florian}, title = {Expression of JAK3 Sensitive Na\(^+\) Coupled Glucose Carrier SGLT1 in Activated Cytotoxic T Lymphocytes}, series = {Cellular Physiology and Biochemistry}, volume = {39}, journal = {Cellular Physiology and Biochemistry}, number = {3}, doi = {10.1159/000447827}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164900}, pages = {1209-1228}, year = {2016}, abstract = {Background: Similar to tumor cells, activated T-lymphocytes generate ATP mainly by glycolytic degradation of glucose. Lymphocyte glucose uptake involves non-concentrative glucose carriers of the GLUT family. In contrast to GLUT isoforms, Na+-coupled glucose-carrier SGLT1 accumulates glucose against glucose gradients and is effective at low extracellular glucose concentrations. The present study explored expression and regulation of SGLT1 in activated murine splenic cytotoxic T cells (CTLs) and human Jurkat T cells. Methods: FACS analysis, immunofluorescence, confocal microscopy, chemiluminescence and Western blotting were employed to estimate SGLT1 expression, function and regulation in lymphocytes, as well as dual electrode voltage clamp in SGLT1 ± JAK3 expressing Xenopus oocytes to quantify the effect of janus kinase3 (JAK3) on SGLT1 function. Results: SGLT1 is expressed in murine CTLs and also in human Jurkat T cells. 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose uptake was significantly decreased by SGLT1-blocker phloridzin (0.2 mM) and by pharmacological inhibition of JAK3 with WHI-P131 (156 µM), WHI-P154 (11.2 µM) and JAK3 inhibitor VI (0.5 µM). Electrogenic glucose transport (Iglucose) in Xenopus oocytes expressing human SGLT1 was increased by additional expression of human wild type JAK3, active A568VJAK3 but not inactive K851AJAK3. Coexpression of JAK3 enhanced the maximal transport rate without significantly modifying affinity of the carrier. Iglucose in SGLT1+JAK3 expressing oocytes was significantly decreased by WHI-P154 (11.2 µM). JAK3 increased the SGLT1 protein abundance in the cell membrane. Inhibition of carrier insertion by brefeldin A (5 µM) in SGLT1+JAK3 expressing oocytes resulted in a decline of Iglucose, which was similar in presence and absence of JAK3. Conclusions: SGLT1 is expressed in murine cytotoxic T cells and human Jurkat T cells and significantly contributes to glucose uptake in those cells post activation. JAK3 up-regulates SGLT1 activity by increasing the carrier protein abundance in the cell membrane, an effect enforcing cellular glucose uptake into activated lymphocytes and thus contributing to the immune response.}, language = {en} } @article{SalkerSinghZengetal.2017, author = {Salker, Madhuri S. and Singh, Yogesh and Zeng, Ni and Chen, Hong and Zhang, Shaqiu and Umbach, Anja T. and Fakhri, Hajar and Kohlhofer, Ursula and Quintanilla-Martinez, Leticia and Durairaj, Ruban R. Peter and Barros, Flavio S. V. and Vrljicak, Pavle and Ott, Sascha and Brucker, Sara Y. and Wallwiener, Diethelm and Madunić, Ivana Vrhovac and Breljak, Davorka and Sabolić, Ivan and Koepsell, Hermann and Brosens, Jan J. and Lang, Florian}, title = {Loss of endometrial sodium glucose cotransporter SGLT1 is detrimental to embryo survival and fetal growth in pregnancy}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-11674-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173814}, year = {2017}, abstract = {Embryo implantation requires a hospitable uterine environment. A key metabolic change that occurs during the peri-implantation period, and throughout early pregnancy, is the rise in endometrial glycogen content. Glycogen accumulation requires prior cellular uptake of glucose. Here we show that both human and murine endometrial epithelial cells express the high affinity Na\(^+\)-coupled glucose carrier SGLT1. Ussing chamber experiments revealed electrogenic glucose transport across the endometrium in wild type (\(Slc5a1^{+/+}\)) but not in SGLT1 defcient (\(Slc5a1^{-/-}\)) mice. Endometrial glycogen content, litter size and weight of offspring at birth were signifcantly lower in \(Slc5a1^{-/-}\) mice. In humans, \(SLC5A1\) expression was upregulated upon decidualization of primary endometrial stromal cells. Endometrial \(SLC5A1\) expression during the implantation window was attenuated in patients with recurrent pregnancy loss when compared with control subjects. Our fndings reveal a novel mechanism establishing adequate endometrial glycogen stores for pregnancy. Disruption of this histiotrophic pathway leads to adverse pregnancy outcome.}, language = {en} }