@article{BocukWolffKrauseetal.2017, author = {Bocuk, Derya and Wolff, Alexander and Krause, Petra and Salinas, Gabriela and Bleckmann, Annalen and Hackl, Christina and Beissbarth, Tim and Koenig, Sarah}, title = {The adaptation of colorectal cancer cells when forming metastases in the liver: expression of associated genes and pathways in a mouse model}, series = {BMC Cancer}, volume = {17}, journal = {BMC Cancer}, number = {342}, doi = {10.1186/s12885-017-3342-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170853}, year = {2017}, abstract = {Background: Colorectal cancer (CRC) is the second leading cause of cancer-related death in men and women. Systemic disease with metastatic spread to distant sites such as the liver reduces the survival rate considerably. The aim of this study was to investigate the changes in gene expression that occur on invasion and expansion of CRC cells when forming metastases in the liver. Methods: The livers of syngeneic C57BL/6NCrl mice were inoculated with 1 million CRC cells (CMT-93) via the portal vein, leading to the stable formation of metastases within 4 weeks. RNA sequencing performed on the Illumina platform was employed to evaluate the expression profiles of more than 14,000 genes, utilizing the RNA of the cell line cells and liver metastases as well as from corresponding tumour-free liver. Results: A total of 3329 differentially expressed genes (DEGs) were identified when cultured CMT-93 cells propagated as metastases in the liver. Hierarchical clustering on heat maps demonstrated the clear changes in gene expression of CMT-93 cells on propagation in the liver. Gene ontology analysis determined inflammation, angiogenesis, and signal transduction as the top three relevant biological processes involved. Using a selection list, matrix metallopeptidases 2, 7, and 9, wnt inhibitory factor, and chemokine receptor 4 were the top five significantly dysregulated genes. Conclusion: Bioinformatics assists in elucidating the factors and processes involved in CRC liver metastasis. Our results support the notion of an invasion-metastasis cascade involving CRC cells forming metastases on successful invasion and expansion within the liver. Furthermore, we identified a gene expression signature correlating strongly with invasiveness and migration. Our findings may guide future research on novel therapeutic targets in the treatment of CRC liver metastasis.}, language = {en} } @article{WestphaleBackhausKoenig2022, author = {Westphale, Silke and Backhaus, Joy and Koenig, Sarah}, title = {Quantifying teaching quality in medical education: The impact of learning gain calculation}, series = {Medical Education}, volume = {56}, journal = {Medical Education}, number = {3}, doi = {10.1111/medu.14694}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259576}, pages = {312-320}, year = {2022}, abstract = {Background Student performance is a mirror of teaching quality. The pre-/post-test design allows a pragmatic approach to comparing the effects of interventions. However, the calculation of current knowledge gain scores introduces varying degrees of distortion. Here we present a new metric employing a linear weighting coefficient to reduce skewness on outcome interpretation. Methods We compared and contrasted a number of common scores (raw and relative gain scores) with our new method on two datasets, one simulated and the other empirical from a previous intervention study (nā€‰=ā€‰180) employing a pre-/post-test design. Results The outcomes of the common scores were clearly different, demonstrating a significant dependency on pre-test scores. Only the new metric revealed a linear relationship to the knowledge baseline, was less skewed on the upper or lower extremes, and proved well suited to allow the calculation of negative learning gains. Employing the empirical dataset, the new method also confirmed the interaction effect of teaching formats with specific subgroups of learner characteristics. Conclusion This work introduces a new weighted metric enabling meaningful comparisons between interventions based on a linear transformation. This method will form the basis to intertwine the calculation of test performance closely with the outcome of learning as an important factor reflecting teaching quality and efficacy. Its regular use can improve the transparency of teaching activities and outcomes, contribute to forming rounded judgements of students' acquisition of knowledge and skills and enable valuable feedforward to develop and enhance curricular concepts.}, language = {en} }