@article{SteinertKunzPrageretal.2015, author = {Steinert, Andre F. and Kunz, Manuela and Prager, Patrick and G{\"o}bel, Sascha and Klein-Hitpass, Ludger and Ebert, Regina and N{\"o}th, Ulrich and Jakob, Franz and Gohlke, Frank}, title = {Characterization of bursa subacromialis-derived mesenchymal stem cells}, series = {Stem Cell Research \& Therapy}, volume = {6}, journal = {Stem Cell Research \& Therapy}, number = {114}, doi = {10.1186/s13287-015-0104-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126446}, year = {2015}, abstract = {Introduction The bursa subacromialis (BS) provides the gliding mechanism of the shoulder and regenerates itself after surgical removal. Therefore, we explored the presence of mesenchymal stem cells (MSCs) within the human adult BS tissue and characterized the BS cells compared to MSCs from bone marrow (BMSCs) on a molecular level. Methods BS cells were isolated by collagenase digest from BS tissues derived from patients with degenerative rotator cuff tears, and BMSCs were recovered by adherent culture from bone-marrow of patients with osteoarthritis of the hip. BS cells and BMSCs were compared upon their potential to proliferate and differentiate along chondrogenic, osteogenic and adipogenic lineages under specific culture conditions. Expression profiles of markers associated with mesenchymal phenotypes were comparatively evaluated by flow cytometry, immunohistochemistry, and whole genome array analyses. Results BS cells and BMSCs appeared mainly fibroblastic and revealed almost similar surface antigen expression profiles, which was \(CD44^+, CD73^+, CD90^+, CD105^+, CD106^+\),\(STRO-1^+, CD14^-, CD31^-, CD34^- , CD45^-, CD144^-\). Array analyses revealed 1969 genes upregulated and 1184 genes downregulated in BS cells vs. BMSCs, indicating a high level of transcriptome similarity. After 3 weeks of differentiation culture, BS cells and BMSCs showed a similar strong chondrogenic, adipogenic and osteogenic potential, as shown by histological, immunohistochemical and RT-PCR analyses in contrast to the respective negative controls. Conclusions Our in vitro characterizations show that BS cells fulfill all characteristics of mesenchymal stem cells, and therefore merit further attention for the development of improved therapies for various shoulder pathologies.}, language = {en} } @article{VolckmarHanPuetteretal.2016, author = {Volckmar, Anna-Lena and Han, Chung Ting and P{\"u}tter, Carolin and Haas, Stefan and Vogel, Carla I. G. and Knoll, Nadja and Struve, Christoph and G{\"o}bel, Maria and Haas, Katharina and Herrfurth, Nikolas and Jarick, Ivonne and Grallert, Harald and Sch{\"u}rmann, Annette and Al-Hasani, Hadi and Hebebrand, Johannes and Sauer, Sascha and Hinney, Anke}, title = {Analysis of Genes Involved in Body Weight Regulation by Targeted Re-Sequencing}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0147904}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167274}, pages = {e0147904}, year = {2016}, abstract = {Introduction Genes involved in body weight regulation that were previously investigated in genome-wide association studies (GWAS) and in animal models were target-enriched followed by massive parallel next generation sequencing. Methods We enriched and re-sequenced continuous genomic regions comprising FTO, MC4R, TMEM18, SDCCAG8, TKNS, MSRA and TBC1D1 in a screening sample of 196 extremely obese children and adolescents with age and sex specific body mass index (BMI) ≥ 99th percentile and 176 lean adults (BMI ≤ 15th percentile). 22 variants were confirmed by Sanger sequencing. Genotyping was performed in up to 705 independent obesity trios (extremely obese child and both parents), 243 extremely obese cases and 261 lean adults. Results and Conclusion We detected 20 different non-synonymous variants, one frame shift and one nonsense mutation in the 7 continuous genomic regions in study groups of different weight extremes. For SNP Arg695Cys (rs58983546) in TBC1D1 we detected nominal association with obesity (pTDT = 0.03 in 705 trios). Eleven of the variants were rare, thus were only detected heterozygously in up to ten individual(s) of the complete screening sample of 372 individuals. Two of them (in FTO and MSRA) were found in lean individuals, nine in extremely obese. In silico analyses of the 11 variants did not reveal functional implications for the mutations. Concordant with our hypothesis we detected a rare variant that potentially leads to loss of FTO function in a lean individual. For TBC1D1, in contrary to our hypothesis, the loss of function variant (Arg443Stop) was found in an obese individual. Functional in vitro studies are warranted.}, language = {en} }