@article{KayaZeebEngelmayerStrassburgeretal.2022, author = {Kaya-Zeeb, Sinan and Engelmayer, Lorenz and Straßburger, Mara and Bayer, Jasmin and B{\"a}hre, Heike and Seifert, Roland and Scherf-Clavel, Oliver and Thamm, Markus}, title = {Octopamine drives honeybee thermogenesis}, series = {eLife}, volume = {11}, journal = {eLife}, doi = {10.7554/eLife.74334}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301327}, year = {2022}, abstract = {In times of environmental change species have two options to survive: they either relocate to a new habitat or they adapt to the altered environment. Adaptation requires physiological plasticity and provides a selection benefit. In this regard, the Western honeybee (Apis mellifera) protrudes with its thermoregulatory capabilities, which enables a nearly worldwide distribution. Especially in the cold, shivering thermogenesis enables foraging as well as proper brood development and thus survival. In this study, we present octopamine signaling as a neurochemical prerequisite for honeybee thermogenesis: we were able to induce hypothermia by depleting octopamine in the flight muscles. Additionally, we could restore the ability to increase body temperature by administering octopamine. Thus, we conclude that octopamine signaling in the flight muscles is necessary for thermogenesis. Moreover, we show that these effects are mediated by β octopamine receptors. The significance of our results is highlighted by the fact the respective receptor genes underlie enormous selective pressure due to adaptation to cold climates. Finally, octopamine signaling in the service of thermogenesis might be a key strategy to survive in a changing environment.}, language = {en} } @article{StraubVollmerLametal.2022, author = {Straub, Anton and Vollmer, Andreas and L{\^a}m, Thi{\^e}n-Tr{\´i} and Brands, Roman C. and Stapf, Maximilian and Scherf-Clavel, Oliver and Bittrich, Max and Fuchs, Andreas and K{\"u}bler, Alexander C. and Hartmann, Stefan}, title = {Evaluation of advanced platelet-rich fibrin (PRF) as a bio-carrier for ampicillin/sulbactam}, series = {Clinical Oral Investigations}, volume = {26}, journal = {Clinical Oral Investigations}, number = {12}, doi = {10.1007/s00784-022-04663-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324515}, pages = {7033-7044}, year = {2022}, abstract = {Objectives Mechanisms of wound healing are often impaired in patients with osteonecrosis of the jaw (ONJ). According to the guidelines for the treatment of this disease, early surgical intervention is indicated. However, surgery often faces complications such as wound healing disorders. The application of platelet-rich fibrin (PRF) after necrosectomy between bone and mucosa may constitute a promising approach to improve surgical results. An aspect that was not investigated until now is that PRF acts as a "bio-carrier" for antibiotics previously applied intravenously. Materials and methods We investigated the antimicrobial properties of PRF in 24 patients presenting ONJ undergoing systemic antibiosis with ampicillin/sulbactam. We measured the concentration of ampicillin/sulbactam in plasma and PRF and performed agar diffusion tests. Ampicillin/sulbactam was applied intravenously to the patient 10 minutes for blood sampling for PRF. No further incorporation of patients' blood or PRF product with antibiotic drugs was obtained. Four healthy patients served as controls. Results Our results revealed that PRF is highly enriched with ampicillin/sulbactam that is released to the environment. The antibiotic concentration in PRF was comparable to the plasma concentration of ampicillin/sulbactam. The inhibition zone (IZ) of PRF was comparable to the standard ampicillin/sulbactam discs used in sensitivity testing. Conclusions The results of our study demonstrated that PRF is a reliable bio-carrier for systemic applied antibiotics and exhibits a large antimicrobial effect. Clinical relevance We describe a clinically useful feature of PRF as a bio-carrier for antibiotics. Especially when applied to poorly perfused tissues and bone such as in ONJ, the local release of antibiotics can reduce wound healing disorders like infections.}, language = {en} } @article{KayaZeebDelacWolfetal.2022, author = {Kaya-Zeeb, Sinan and Delac, Saskia and Wolf, Lena and Marante, Ana Luiza and Scherf-Clavel, Oliver and Thamm, Markus}, title = {Robustness of the honeybee neuro-muscular octopaminergic system in the face of cold stress}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2022.1002740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288753}, year = {2022}, abstract = {In recent decades, our planet has undergone dramatic environmental changes resulting in the loss of numerous species. This contrasts with species that can adapt quickly to rapidly changing ambient conditions, which require physiological plasticity and must occur rapidly. The Western honeybee (Apis mellifera) apparently meets this challenge with remarkable success, as this species is adapted to numerous climates, resulting in an almost worldwide distribution. Here, coordinated individual thermoregulatory activities ensure survival at the colony level and thus the transmission of genetic material. Recently, we showed that shivering thermogenesis, which is critical for honeybee thermoregulation, depends on octopamine signaling. In this study, we tested the hypothesis that the thoracic neuro-muscular octopaminergic system strives for a steady-state equilibrium under cold stress to maintain endogenous thermogenesis. We can show that this applies for both, octopamine provision by flight muscle innervating neurons and octopamine receptor expression in the flight muscles. Additionally, we discovered alternative splicing for AmOARβ2. At least the expression of one isoform is needed to survive cold stress conditions. We assume that the thoracic neuro-muscular octopaminergic system is finely tuned in order to contribute decisively to survival in a changing environment.}, language = {en} } @article{GernerScherfClavel2021, author = {Gerner, Bettina and Scherf-Clavel, Oliver}, title = {Physiologically based pharmacokinetic modelling of Cabozantinib to simulate enterohepatic recirculation, drug-drug interaction with Rifampin and liver impairment}, series = {Pharmaceutics}, volume = {13}, journal = {Pharmaceutics}, number = {6}, issn = {1999-4923}, doi = {10.3390/pharmaceutics13060778}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239661}, year = {2021}, abstract = {Cabozantinib (CAB) is a receptor tyrosine kinase inhibitor approved for the treatment of several cancer types. Enterohepatic recirculation (EHC) of the substance is assumed but has not been further investigated yet. CAB is mainly metabolized via CYP3A4 and is susceptible for drug-drug interactions (DDI). The goal of this work was to develop a physiologically based pharmacokinetic (PBPK) model to investigate EHC, to simulate DDI with Rifampin and to simulate subjects with hepatic impairment. The model was established using PK-Sim® and six human clinical studies. The inclusion of an EHC process into the model led to the most accurate description of the pharmacokinetic behavior of CAB. The model was able to predict plasma concentrations with low bias and good precision. Ninety-seven percent of all simulated plasma concentrations fell within 2-fold of the corresponding concentration observed. Maximum plasma concentration (C\(_{max}\)) and area under the curve (AUC) were predicted correctly (predicted/observed ratio of 0.9-1.2 for AUC and 0.8-1.1 for C\(_{max}\)). DDI with Rifampin led to a reduction in predicted AUC by 77\%. Several physiological parameters were adapted to simulate hepatic impairment correctly. This is the first CAB model used to simulate DDI with Rifampin and hepatic impairment including EHC, which can serve as a starting point for further simulations with regard to special populations.}, language = {en} } @article{UrlaubKaiserScherf‐Claveletal.2021, author = {Urlaub, Jonas and Kaiser, Reinhard P. and Scherf-Clavel, Oliver and Bolm, Carsten and Holzgrabe, Ulrike}, title = {Investigation of isomerization of dexibuprofen in a ball mill using chiral capillary electrophoresis}, series = {Electrophoresis}, volume = {42}, journal = {Electrophoresis}, number = {17-18}, doi = {10.1002/elps.202000307}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225852}, pages = {1790 -- 1799}, year = {2021}, abstract = {Besides the racemate, the S-enantiomer of ibuprofen (Ibu) is used for the treatment of inflammation and pain. Since the configurational stability of S-Ibu in solid state is of interest, it was studied by means of ball milling experiments. For the evaluation of the enantiomeric composition, a chiral CE method was developed and validated according to the ICH guideline Q2(R1). The addition of Mg\(^{2+}\), Ca\(^{2+}\), or Zn\(^{2+}\) ions to the background electrolyte (BGE) was found to improve Ibu enantioresolution. Chiral separation of Ibu enantiomers was achieved on a 60.2 cm (50.0 cm effective length) x 75 μm fused-silica capillary using a background electrolyte (BGE) composed of 50 mM sodium acetate, 10 mM magnesium acetate tetrahydrate, and 35 mM heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) as chiral selector. The quantification of R-Ibu in the mixture was performed using the normalization procedure. Linearity was evaluated in the range of 0.68-5.49\% R-Ibu (R\(^{2}\) = 0.999), recovery was found to range between 97 and 103\%, the RSD of intra- and interday precision below 2.5\%, and the limit of quantification for R- in S-Ibu was calculated to be 0.21\% (extrapolated) and 0.15\% (dilution of racemic ibuprofen), respectively. Isomerization of S-Ibu was observed under basic conditions by applying long milling times and high milling frequencies.}, language = {en} } @article{IsbernerGesierichBalakirouchenaneetal.2022, author = {Isberner, Nora and Gesierich, Anja and Balakirouchenane, David and Schilling, Bastian and Aghai-Trommeschlaeger, Fatemeh and Zimmermann, Sebastian and Kurlbaum, Max and Puszkiel, Alicja and Blanchet, Benoit and Klinker, Hartwig and Scherf-Clavel, Oliver}, title = {Monitoring of dabrafenib and trametinib in serum and self-sampled capillary blood in patients with BRAFV600-mutant melanoma}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {19}, issn = {2072-6694}, doi = {10.3390/cancers14194566}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288109}, year = {2022}, abstract = {Simple Summary In melanoma patients treated with dabrafenib and trametinib, dose reductions and treatment discontinuations related to adverse events (AE) occur frequently. However, the associations between patient characteristics, AE, and exposure are unclear. Our prospective study analyzed serum (hydroxy-)dabrafenib and trametinib exposure and investigated its association with toxicity and patient characteristics. Additionally, the feasibility of at-home sampling of capillary blood was assessed, and a model to convert capillary blood concentrations to serum concentrations was developed. (Hydroxy-)dabrafenib or trametinib exposure was not associated with age, sex, body mass index, or AE. Co-medication with P-glycoprotein inducers was associated with lower trough concentrations of trametinib but not (hydroxy-)dabrafenib. The applicability of the self-sampling of capillary blood was demonstrated. Our conversion model was adequate for estimating serum exposure from micro-samples. The monitoring of dabrafenib and trametinib may be useful for dose modification and can be optimized by at-home sampling and our new conversion model. Abstract Patients treated with dabrafenib and trametinib for BRAF\(^{V600}\)-mutant melanoma often experience dose reductions and treatment discontinuations. Current knowledge about the associations between patient characteristics, adverse events (AE), and exposure is inconclusive. Our study included 27 patients (including 18 patients for micro-sampling). Dabrafenib and trametinib exposure was prospectively analyzed, and the relevant patient characteristics and AE were reported. Their association with the observed concentrations and Bayesian estimates of the pharmacokinetic (PK) parameters of (hydroxy-)dabrafenib and trametinib were investigated. Further, the feasibility of at-home sampling of capillary blood was assessed. A population pharmacokinetic (popPK) model-informed conversion model was developed to derive serum PK parameters from self-sampled capillary blood. Results showed that (hydroxy-)dabrafenib or trametinib exposure was not associated with age, sex, body mass index, or toxicity. Co-medication with P-glycoprotein inducers was associated with significantly lower trough concentrations of trametinib (p = 0.027) but not (hydroxy-)dabrafenib. Self-sampling of capillary blood was feasible for use in routine care. Our conversion model was adequate for estimating serum PK parameters from micro-samples. Findings do not support a general recommendation for monitoring dabrafenib and trametinib but suggest that monitoring can facilitate making decisions about dosage adjustments. To this end, micro-sampling and the newly developed conversion model may be useful for estimating precise PK parameters.}, language = {en} } @article{GernerAghaiTrommeschlaegerKrausetal.2022, author = {Gerner, Bettina and Aghai-Trommeschlaeger, Fatemeh and Kraus, Sabrina and Grigoleit, G{\"o}tz Ulrich and Zimmermann, Sebastian and Kurlbaum, Max and Klinker, Hartwig and Isberner, Nora and Scherf-Clavel, Oliver}, title = {A physiologically-based pharmacokinetic model of ruxolitinib and posaconazole to predict CYP3A4-mediated drug-drug interaction frequently observed in graft versus host disease patients}, series = {Pharmaceutics}, volume = {14}, journal = {Pharmaceutics}, number = {12}, issn = {1999-4923}, doi = {10.3390/pharmaceutics14122556}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297261}, year = {2022}, abstract = {Ruxolitinib (RUX) is approved for the treatment of steroid-refractory acute and chronic graft versus host disease (GvHD). It is predominantly metabolized via cytochrome P450 (CYP) 3A4. As patients with GvHD have an increased risk of invasive fungal infections, RUX is frequently combined with posaconazole (POS), a strong CYP3A4 inhibitor. Knowledge of RUX exposure under concomitant POS treatment is scarce and recommendations on dose modifications are inconsistent. A physiologically based pharmacokinetic (PBPK) model was developed to investigate the drug-drug interaction (DDI) between POS and RUX. The predicted RUX exposure was compared to observed concentrations in patients with GvHD in the clinical routine. PBPK models for RUX and POS were independently set up using PK-Sim\(^®\) Version 11. Plasma concentration-time profiles were described successfully and all predicted area under the curve (AUC) values were within 2-fold of the observed values. The increase in RUX exposure was predicted with a DDI ratio of 1.21 (C\(_{max}\)) and 1.59 (AUC). Standard dosing in patients with GvHD led to higher RUX exposure than expected, suggesting further dose reduction if combined with POS. The developed model can serve as a starting point for further simulations of the implemented DDI and can be extended to further perpetrators of CYP-mediated PK-DDIs or disease-specific physiological changes.}, language = {en} } @article{SchraderRieseKurlbaumetal.2021, author = {Schrader, Nikolas and Riese, Thorsten and Kurlbaum, Max and Meybohm, Patrick and Kredel, Markus and Surat, G{\"u}zin and Scherf-Clavel, Oliver and Strate, Alexander and Pospiech, Andreas and Hoppe, Kerstin}, title = {Personalized antibiotic therapy for the critically ill: Implementation strategies and effects on clinical outcome of piperacillin therapeutic drug monitoring — a descriptive retrospective analysis}, series = {Antibiotics}, volume = {10}, journal = {Antibiotics}, number = {12}, issn = {2079-6382}, doi = {10.3390/antibiotics10121452}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250052}, year = {2021}, abstract = {Therapeutic drug monitoring (TDM) is increasingly relevant for an individualized antibiotic therapy and subsequently a necessary tool to reduce multidrug-resistant pathogens, especially in light of diminishing antimicrobial capabilities. Critical illness is associated with profound pharmacokinetic and pharmacodynamic alterations, which challenge dose finding and the application of particularly hydrophilic drugs such as β-lactam antibiotics. Methods: Implementation strategy, potential benefit, and practicability of the developed standard operating procedures were retrospectively analyzed from January to December 2020. Furthermore, the efficacy of the proposed dosing target of piperacillin in critically ill patients was evaluated. Results: In total, 160 patients received piperacillin/tazobactam therapy and were subsequently included in the study. Of them, 114 patients received piperacillin/tazobactam by continuous infusion and had at least one measurement of piperacillin serum level according to the standard operating procedure. In total, 271 measurements were performed with an average level of 79.0 ± 46.0 mg/L. Seventy-one piperacillin levels exceeded 100 mg/L and six levels were lower than 22.5 mg/L. The high-level and the low-level group differed significantly in infection laboratory parameters (CRP (mg/dL) 20.18 ± 11.71 vs. 5.75 ± 5.33) and renal function [glomerular filtration rate (mL/min/1.75 m2) 40.85 ± 26.74 vs. 120.50 ± 70.48]. Conclusions: Piperacillin levels are unpredictable in critically ill patients. TDM during piperacillin/tazobactam therapy is highly recommended for all patients. Although our implementation strategy was effective, further strategies implemented into the daily clinical workflow might support the health care staff and increase the clinicians' alertness.}, language = {en} } @article{VolppFerianecJežovičovaetal.2020, author = {Volpp, Linda and Ferianec, Vladim{\´i}r and Ježovičov{\´a}, Miriam and Ďuračkov{\´a}, Zdeňka and Scherf-Clavel, Oliver and H{\"o}gger, Petra}, title = {Constituents and Metabolites of a French Oak Wood Extract (Robuvit®) in Serum and Blood Cell Samples of Women Undergoing Hysterectomy}, series = {Frontiers in Pharmacology}, volume = {11}, journal = {Frontiers in Pharmacology}, number = {74}, issn = {1663-9812}, doi = {10.3389/fphar.2020.00074}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200105}, year = {2020}, abstract = {Ellagitannins are signature constituents of oak wood and their consumption has been associated with various health benefits. In vivo, they undergo metabolic degradation including gut microbial metabolism yielding urolithins. Only limited data is available about compounds being present in blood after intake of an extract from French oak wood, Robuvit®. In the course of a randomized, double-blind, controlled clinical investigation, 66 patients undergoing hysterectomy received placebo or 300 mg Robuvit® per day before and over 8 weeks after surgery. Serum and blood cell samples were analyzed by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The number of urolithin producers and the urolithin levels increased after intake of Robuvit®. In serum samples, the median concentration of urolithin A was 14.0 ng/ml [interquartile range (IQR) 57.4] after 8 weeks. Urolithin B was determined at 22.3 ng/ml (IQR 12.6), urolithin C at 2.66 ng/ml (IQR 2.08). In blood cells, lower concentrations and only urolithins A and B were detected. A statistically significant association of lower post-surgical pain scores with metabotype A was detected (p < 0.05). To conclude, supplementation with French oak wood extract raised urolithin generation in patients and suggested health advantages for urolithin-producers.}, language = {en} } @article{PenagosCalveteDuqueMarimonetal.2019, author = {Penagos-Calvete, Diana and Duque, Valeria and Marimon, Claudia and Parra, Diana M. and Restrepo-Arango, Sandra K. and Scherf-Clavel, Oliver and Holzgrabe, Ulrike and Montoya, Guillermo and Salamanca, Constain H.}, title = {Glycerolipid composition and advanced physicochemical considerations of sacha inchi oil toward cosmetic products formulation}, series = {Cosmetics}, volume = {6}, journal = {Cosmetics}, number = {4}, issn = {2079-9284}, doi = {10.3390/cosmetics6040070}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193857}, year = {2019}, abstract = {Sacha inchi oil is a premier raw material with highly nutritional and functional features for the foodstuff, pharmaceutical, beauty, and personal care industries. One of the most important facts about this oil is the huge chemical content of unsaturated and polyunsaturated fatty acids. However, the current available information on the characterization of the triglyceride composition and the advance physicochemical parameters relevant to emulsion development is limited. Therefore, this research focused on providing a detailed description of the lipid composition using high-resolution tandem mass spectrometry and thorough physicochemical characterization to find the value of the required hydrophilic-lipophilic balance (HLB). For this, a study in the interfacial tension was evaluated, followed by the assessment of different parameters such as creaming index, droplet size, viscosity, zeta potential, pH, and electrical conductivity for a series emulsified at thermal stress condition. The results show that fatty acids are arranged into glycerolipids and the required HLB to achieve the maximum physical stability is around 8.}, language = {en} }