@article{ElHelouBiegnerBodeetal.2019, author = {El-Helou, Sabine M. and Biegner, Anika-Kerstin and Bode, Sebastian and Ehl, Stephan R. and Heeg, Maximilian and Maccari, Maria E. and Ritterbusch, Henrike and Speckmann, Carsten and Rusch, Stephan and Scheible, Raphael and Warnatz, Klaus and Atschekzei, Faranaz and Beider, Renata and Ernst, Diana and Gerschmann, Stev and Jablonka, Alexandra and Mielke, Gudrun and Schmidt, Reinhold E. and Sch{\"u}rmann, Gesine and Sogkas, Georgios and Baumann, Ulrich H. and Klemann, Christian and Viemann, Dorothee and Bernuth, Horst von and Kr{\"u}ger, Renate and Hanitsch, Leif G. and Scheibenbogen, Carmen M. and Wittke, Kirsten and Albert, Michael H. and Eichinger, Anna and Hauck, Fabian and Klein, Christoph and Rack-Hoch, Anita and Sollinger, Franz M. and Avila, Anne and Borte, Michael and Borte, Stephan and Fasshauer, Maria and Hauenherm, Anja and Kellner, Nils and M{\"u}ller, Anna H. and {\"U}lzen, Anett and Bader, Peter and Bakhtiar, Shahrzad and Lee, Jae-Yun and Heß, Ursula and Schubert, Ralf and W{\"o}lke, Sandra and Zielen, Stefan and Ghosh, Sujal and Laws, Hans-Juergen and Neubert, Jennifer and Oommen, Prasad T. and H{\"o}nig, Manfred and Schulz, Ansgar and Steinmann, Sandra and Klaus, Schwarz and D{\"u}ckers, Gregor and Lamers, Beate and Langemeyer, Vanessa and Niehues, Tim and Shai, Sonu and Graf, Dagmar and M{\"u}glich, Carmen and Schmalzing, Marc T. and Schwaneck, Eva C. and Tony, Hans-Peter and Dirks, Johannes and Haase, Gabriele and Liese, Johannes G. and Morbach, Henner and Foell, Dirk and Hellige, Antje and Wittkowski, Helmut and Masjosthusmann, Katja and Mohr, Michael and Geberzahn, Linda and Hedrich, Christian M. and M{\"u}ller, Christiane and R{\"o}sen-Wolff, Angela and Roesler, Joachim and Zimmermann, Antje and Behrends, Uta and Rieber, Nikolaus and Schauer, Uwe and Handgretinger, Rupert and Holzer, Ursula and Henes, J{\"o}rg and Kanz, Lothar and Boesecke, Christoph and Rockstroh, J{\"u}rgen K. and Schwarze-Zander, Carolynne and Wasmuth, Jan-Christian and Dilloo, Dagmar and H{\"u}lsmann, Brigitte and Sch{\"o}nberger, Stefan and Schreiber, Stefan and Zeuner, Rainald and Ankermann, Tobias and Bismarck, Philipp von and Huppertz, Hans-Iko and Kaiser-Labusch, Petra and Greil, Johann and Jakoby, Donate and Kulozik, Andreas E. and Metzler, Markus and Naumann-Bartsch, Nora and Sobik, Bettina and Graf, Norbert and Heine, Sabine and Kobbe, Robin and Lehmberg, Kai and M{\"u}ller, Ingo and Herrmann, Friedrich and Horneff, Gerd and Klein, Ariane and Peitz, Joachim and Schmidt, Nadine and Bielack, Stefan and Groß-Wieltsch, Ute and Classen, Carl F. and Klasen, Jessica and Deutz, Peter and Kamitz, Dirk and Lassy, Lisa and Tenbrock, Klaus and Wagner, Norbert and Bernbeck, Benedikt and Brummel, Bastian and Lara-Villacanas, Eusebia and M{\"u}nstermann, Esther and Schneider, Dominik T. and Tietsch, Nadine and Westkemper, Marco and Weiß, Michael and Kramm, Christof and K{\"u}hnle, Ingrid and Kullmann, Silke and Girschick, Hermann and Specker, Christof and Vinnemeier-Laubenthal, Elisabeth and Haenicke, Henriette and Schulz, Claudia and Schweigerer, Lothar and M{\"u}ller, Thomas G. and Stiefel, Martina and Belohradsky, Bernd H. and Soetedjo, Veronika and Kindle, Gerhard and Grimbacher, Bodo}, title = {The German national registry of primary immunodeficiencies (2012-2017)}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2019.01272}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226629}, year = {2019}, abstract = {Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs. Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel. Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1-25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57\% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36\% of patients. Familial cases were observed in 21\% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0-88 years). Presenting symptoms comprised infections (74\%) and immune dysregulation (22\%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE-syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49\% of all patients received immunoglobulin G (IgG) substitution (70\%-subcutaneous; 29\%-intravenous; 1\%-unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy. Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment.}, language = {en} } @article{PreisingSchneiderBucheretal.2015, author = {Preising, Christina and Schneider, Reinhard and Bucher, Michael and Gekle, Michael and Sauvant, Christoph}, title = {Regulation of expression of renal organic anion transporters OAT1 and OAT3 in a model of ischemia/reperfusion injury}, series = {Cellular Physiology and Biochemistry}, volume = {37}, journal = {Cellular Physiology and Biochemistry}, number = {1}, doi = {10.1159/000430328}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144504}, year = {2015}, abstract = {Background: Recently, we gained evidence that impairment of rOat1 and rOat3 expression induced by ischemic acute kidney injury (AKI) is mediated by COX metabolites and this suppression might be critically involved in renal damage. Methods: (i) Basolateral organic anion uptake into proximal tubular cells after model ischemia and reperfusion (I/R) was investigated by fluorescein uptake. The putative promoter sequences from hOAT1 (SLC22A6) and hOAT3 (SCL22A8) were cloned into a reporter plasmid, transfected into HEK cells and (ii) transcriptional activity was determined after model ischemia and reperfusion as a SEAP reporter gen assay. Inhibitors or antagonists were applied with the beginning of reperfusion. Results: By using inhibitors of PKA (H89) and PLC (U73122), antagonists of E prostanoid receptor type 2 (AH6809) and type 4 (L161,982), we gained evidence that I/R induced down regulation of organic anion transport is mediated by COX1 metabolites via E prostanoid receptor type 4. The latter signaling was confirmed by application of butaprost (EP2 agonist) or TCS2510 (EP4 agonist) to control cells. In brief, the latter signaling was verified for the transcriptional activity in the reporter gen assay established. Therein, selective inhibitors for COX1 (SC58125) and COX2 (SC560) were also applied. Conclusion: Our data show (a) that COX1 metabolites are involved in the regulation of renal organic anion transport(ers) after I/R via the EP4 receptor and (b) that this is due to transcriptional regulation of the respective transporters. As the promoter sequences cloned were of human origin and expressed in a human renal epithelial cell line we (c) hypothesize that the regulatory mechanisms described after I/R is meaningful for humans as well.}, language = {en} } @article{HautmannDoepfnerKatzmannetal.2018, author = {Hautmann, Christopher and D{\"o}pfner, Manfred and Katzmann, Josepha and Sch{\"u}rmann, Stephanie and Wolff Metternich-Kaizman, Tanja and Jaite, Charlotte and Kappel, Viola and Geissler, Julia and Warnke, Andreas and Jacob, Christian and Hennighausen, Klaus and Haack-Dees, Barbara and Schneider-Momm, Katja and Philipsen, Alexandra and Matthies, Swantje and R{\"o}sler, Michael and Retz, Wolfgang and Gontard, Alexander von and Sobanski, Esther and Alm, Barbara and Hohmann, Sarah and H{\"a}ge, Alexander and Poustka, Luise and Colla, Michael and Gentschow, Laura and Freitag, Christine M. and Becker, Katja and Jans, Thomas}, title = {Sequential treatment of ADHD in mother and child (AIMAC study): importance of the treatment phases for intervention success in a randomized trial}, series = {BMC Psychiatry}, volume = {18}, journal = {BMC Psychiatry}, doi = {10.1186/s12888-018-1963-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227930}, year = {2018}, abstract = {Background The efficacy of parent-child training (PCT) regarding child symptoms may be reduced if the mother has attention-deficit/hyperactivity disorder (ADHD). The AIMAC study (ADHD in Mothers and Children) aimed to compensate for the deteriorating effect of parental psychopathology by treating the mother (Step 1) before the beginning of PCT (Step 2). This secondary analysis was particularly concerned with the additional effect of the Step 2 PCT on child symptoms after the Step 1 treatment. Methods The analysis included 143 mothers and children (aged 6-12 years) both diagnosed with ADHD. The study design was a two-stage, two-arm parallel group trial (Step 1 treatment group [TG]: intensive treatment of the mother including psychotherapy and pharmacotherapy; Step 1 control group [CG]: supportive counseling only for mother; Step 2 TG and CG: PCT). Single- and multi-group analyses with piecewise linear latent growth curve models were applied to test for the effects of group and phase. Child symptoms (e.g., ADHD symptoms, disruptive behavior) were rated by three informants (blinded clinician, mother, teacher). Results Children in the TG showed a stronger improvement of their disruptive behavior as rated by mothers than those in the CG during Step 1 (Step 1: TG vs. CG). In the CG, according to reports of the blinded clinician and the mother, the reduction of children's disruptive behavior was stronger during Step 2 than during Step 1 (CG: Step 1 vs. Step 2). In the TG, improvement of child outcome did not differ across treatment steps (TG: Step 1 vs. Step 2). Conclusions Intensive treatment of the mother including pharmacotherapy and psychotherapy may have small positive effects on the child's disruptive behavior. PCT may be a valid treatment option for children with ADHD regarding disruptive behavior, even if mothers are not intensively treated beforehand. Trial registration ISRCTN registry ISRCTN73911400. Registered 29 March 2007.}, language = {en} } @article{HendricksMeirHankiretal.2022, author = {Hendricks, Anne and Meir, Michael and Hankir, Mohammed and Lenschow, Christina and Germer, Christoph-Thomas and Schneider, Michael and Wiegering, Armin and Schlegel, Nicolas}, title = {Suppurative thyroiditis caused by ingested fish bone in the thyroid gland: a case report on its diagnostics and surgical therapy}, series = {BMC Surgery}, volume = {22}, journal = {BMC Surgery}, number = {1}, doi = {10.1186/s12893-022-01542-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299775}, year = {2022}, abstract = {Background Accidental ingestion of fish bone is a common cause of otolaryngological emergency. Migration of the ingested bone into the thyroid gland, however, occurs very rarely. The associated clinical presentation, symptoms and duration of discomfort are also highly variable between patients and can be diagnostically challenging. Case presentation Here, we report the case of a 71-year-old female patient presenting with an ingested fish bone that migrated into the right thyroid lobe as a rare cause of suppurative thyroiditis with the clinical features of sepsis. We outline the diagnostic approach, peri- and intraoperative management as well as complications. It is proposed that besides endoscopy, imaging methods such as ultrasound or computed tomography may be necessary to verify the diagnosis and location of an ingested fish bone. Prompt surgical removal of the foreign body and resection of the infectious focus is recommended to minimize the risk of local inflammation, recurrent nerve lesions and septic complications arising from the spread of infection. Conclusion Fish bone migration into the thyroid gland is an extremely rare event, the successful detection and surgical management of which can be achieved through a careful interdisciplinary approach.}, language = {en} } @article{SalehiZarePrezzaetal.2023, author = {Salehi, Saeede and Zare, Abdolhossein and Prezza, Gianluca and Bader, Jakob and Schneider, Cornelius and Fischer, Utz and Meissner, Felix and Mann, Matthias and Briese, Michael and Sendtner, Michael}, title = {Cytosolic Ptbp2 modulates axon growth in motoneurons through axonal localization and translation of Hnrnpr}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-39787-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357639}, year = {2023}, abstract = {The neuronal RNA-binding protein Ptbp2 regulates neuronal differentiation by modulating alternative splicing programs in the nucleus. Such programs contribute to axonogenesis by adjusting the levels of protein isoforms involved in axon growth and branching. While its functions in alternative splicing have been described in detail, cytosolic roles of Ptbp2 for axon growth have remained elusive. Here, we show that Ptbp2 is located in the cytosol including axons and growth cones of motoneurons, and that depletion of cytosolic Ptbp2 affects axon growth. We identify Ptbp2 as a major interactor of the 3' UTR of Hnrnpr mRNA encoding the RNA-binding protein hnRNP R. Axonal localization of Hnrnpr mRNA and local synthesis of hnRNP R protein are strongly reduced when Ptbp2 is depleted, leading to defective axon growth. Ptbp2 regulates hnRNP R translation by mediating the association of Hnrnpr with ribosomes in a manner dependent on the translation factor eIF5A2. Our data thus suggest a mechanism whereby cytosolic Ptbp2 modulates axon growth by fine-tuning the mRNA transport and local synthesis of an RNA-binding protein.}, language = {en} } @article{DoerkPeterlongoMannermaaetal.2019, author = {D{\"o}rk, Thilo and Peterlongo, Peter and Mannermaa, Arto and Bolla, Manjeet K. and Wang, Qin and Dennis, Joe and Ahearn, Thomas and Andrulis, Irene L. and Anton-Culver, Hoda and Arndt, Volker and Aronson, Kristan J. and Augustinsson, Annelie and Beane Freeman, Laura E. and Beckmann, Matthias W. and Beeghly-Fadiel, Alicia and Behrens, Sabine and Bermisheva, Marina and Blomqvist, Carl and Bogdanova, Natalia V. and Bojesen, Stig E. and Brauch, Hiltrud and Brenner, Hermann and Burwinkel, Barbara and Canzian, Federico and Chan, Tsun L. and Chang-Claude, Jenny and Chanock, Stephen J. and Choi, Ji-Yeob and Christiansen, Hans and Clarke, Christine L. and Couch, Fergus J. and Czene, Kamila and Daly, Mary B. and dos-Santos-Silva, Isabel and Dwek, Miriam and Eccles, Diana M. and Ekici, Arif B. and Eriksson, Mikael and Evans, D. Gareth and Fasching, Peter A. and Figueroa, Jonine and Flyger, Henrik and Fritschi, Lin and Gabrielson, Marike and Gago-Dominguez, Manuela and Gao, Chi and Gapstur, Susan M. and Garc{\´i}a-Closas, Montserrat and Garc{\´i}a-S{\´a}enz, Jos{\´e} A. and Gaudet, Mia M. and Giles, Graham G. and Goldberg, Mark S. and Goldgar, David E. and Guen{\´e}l, Pascal and Haeberle, Lothar and Haimann, Christopher A. and H{\aa}kansson, Niclas and Hall, Per and Hamann, Ute and Hartman, Mikael and Hauke, Jan and Hein, Alexander and Hillemanns, Peter and Hogervorst, Frans B. L. and Hooning, Maartje J. and Hopper, John L. and Howell, Tony and Huo, Dezheng and Ito, Hidemi and Iwasaki, Motoki and Jakubowska, Anna and Janni, Wolfgang and John, Esther M. and Jung, Audrey and Kaaks, Rudolf and Kang, Daehee and Kapoor, Pooja Middha and Khusnutdinova, Elza and Kim, Sung-Won and Kitahara, Cari M. and Koutros, Stella and Kraft, Peter and Kristensen, Vessela N. and Kwong, Ava and Lambrechts, Diether and Le Marchand, Loic and Li, Jingmei and Lindstr{\"o}m, Sara and Linet, Martha and Lo, Wing-Yee and Long, Jirong and Lophatananon, Artitaya and Lubiński, Jan and Manoochehri, Mehdi and Manoukian, Siranoush and Margolin, Sara and Martinez, Elena and Matsuo, Keitaro and Mavroudis, Dimitris and Meindl, Alfons and Menon, Usha and Milne, Roger L. and Mohd Taib, Nur Aishah and Muir, Kenneth and Mulligan, Anna Marie and Neuhausen, Susan L. and Nevanlinna, Heli and Neven, Patrick and Newman, William G. and Offit, Kenneth and Olopade, Olufunmilayo I. and Olshan, Andrew F. and Olson, Janet E. and Olsson, H{\aa}kan and Park, Sue K. and Park-Simon, Tjoung-Won and Peto, Julian and Plaseska-Karanfilska, Dijana and Pohl-Rescigno, Esther and Presneau, Nadege and Rack, Brigitte and Radice, Paolo and Rashid, Muhammad U. and Rennert, Gad and Rennert, Hedy S. and Romero, Atocha and Ruebner, Matthias and Saloustros, Emmanouil and Schmidt, Marjanka K. and Schmutzler, Rita K. and Schneider, Michael O. and Schoemaker, Minouk J. and Scott, Christopher and Shen, Chen-Yang and Shu, Xiao-Ou and Simard, Jaques and Slager, Susan and Smichkoska, Snezhana and Southey, Melissa C. and Spinelli, John J. and Stone, Jennifer and Surowy, Harald and Swerdlow, Anthony J. and Tamimi, Rulla M. and Tapper, William J. and Teo, Soo H. and Terry, Mary Beth and Toland, Amanda E. and Tollenaar, Rob A. E. M. and Torres, Diana and Torres-Mej{\´i}a, Gabriela and Troester, Melissa A. and Truong, Th{\´e}r{\`e}se and Tsugane, Shoichiro and Untch, Michael and Vachon, Celine M. and van den Ouweland, Ans M. W. and van Veen, Elke M. and Vijai, Joseph and Wendt, Camilla and Wolk, Alicja and Yu, Jyh-Cherng and Zheng, Wei and Ziogas, Argyrios and Ziv, Elad and Dunnig, Alison and Pharaoh, Paul D. P. and Schindler, Detlev and Devilee, Peter and Easton, Douglas F.}, title = {Two truncating variants in FANCC and breast cancer risk}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, organization = {ABCTB Investigators, NBCS Collaborators}, doi = {10.1038/s41598-019-48804-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222838}, year = {2019}, abstract = {Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95\%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.}, language = {en} } @article{ArltBiehlTayloretal.2011, author = {Arlt, Wiebke and Biehl, Michael and Taylor, Angela E. and Hahner, Stefanie and Lib{\´e}, Rossella and Hughes, Beverly A. and Schneider, Petra and Smith, David J. and Stiekema, Han and Krone, Nils and Porfiri, Emilio and Opocher, Giuseppe and Bertherat, Jer{\^o}me and Mantero, Franco and Allolio, Bruno and Terzolo, Massimo and Nightingale, Peter and Shackleton, Cedric H. L. and Bertagna, Xavier and Fassnacht, Martin and Stewart, Paul M.}, title = {Urine Steroid Metabolomics as a Biomarker Tool for Detecting Malignancy in Adrenal Tumors}, series = {The Journal of Clinical Endocrinology \& Metabolism}, volume = {96}, journal = {The Journal of Clinical Endocrinology \& Metabolism}, number = {12}, doi = {10.1210/jc.2011-1565}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154682}, pages = {3775 -- 3784}, year = {2011}, abstract = {Context: Adrenal tumors have a prevalence of around 2\% in the general population. Adrenocortical carcinoma (ACC) is rare but accounts for 2-11\% of incidentally discovered adrenal masses. Differentiating ACC from adrenocortical adenoma (ACA) represents a diagnostic challenge in patients with adrenal incidentalomas, with tumor size, imaging, and even histology all providing unsatisfactory predictive values. Objective: Here we developed a novel steroid metabolomic approach, mass spectrometry-based steroid profiling followed by machine learning analysis, and examined its diagnostic value for the detection of adrenal malignancy. Design: Quantification of 32 distinct adrenal derived steroids was carried out by gas chromatography/mass spectrometry in 24-h urine samples from 102 ACA patients (age range 19-84 yr) and 45 ACC patients (20-80 yr). Underlying diagnosis was ascertained by histology and metastasis in ACC and by clinical follow-up [median duration 52 (range 26-201) months] without evidence of metastasis in ACA. Steroid excretion data were subjected to generalized matrix learning vector quantization (GMLVQ) to identify the most discriminative steroids. Results: Steroid profiling revealed a pattern of predominantly immature, early-stage steroidogenesis in ACC. GMLVQ analysis identified a subset of nine steroids that performed best in differentiating ACA from ACC. Receiver-operating characteristics analysis of GMLVQ results demonstrated sensitivity = specificity = 90\% (area under the curve = 0.97) employing all 32 steroids and sensitivity = specificity = 88\% (area under the curve = 0.96) when using only the nine most differentiating markers. Conclusions: Urine steroid metabolomics is a novel, highly sensitive, and specific biomarker tool for discriminating benign from malignant adrenal tumors, with obvious promise for the diagnostic work-up of patients with adrenal incidentalomas.}, language = {en} } @article{FleglerSchneiderPrieschletal.2016, author = {Flegler, Andreas and Schneider, Michael and Prieschl, Johannes and Stevens, Ralph and Vinnay, Thomas and Mandel, Karl}, title = {Continuous flow synthesis and cleaning of nano layered double hydroxides and the potential of the route to adjust round or platelet nanoparticle morphology}, series = {RSC Advances}, volume = {6}, journal = {RSC Advances}, number = {62}, doi = {10.1039/c6ra09553d}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191305}, pages = {57236-57244}, year = {2016}, abstract = {Here, we report a continuous flow synthesis of nano LDH, comprising a continuous precipitation process using static mixers and followed by an immediate cleaning process via a semi-continuous centrifuge to obtain the final product in one-go. Via this synthesis setup, it is possible to independently vary the concentrations of the reactants during precipitation and at the same time ensure constant reaction conditions and an immediate "quenching" of the precipitate due to "on the flow"-washing. We found that this paves the way to adjust the synthesis parameters in a way that the final morphology of the nano-LDH particles can be controlled to be either round or platelet-like.}, language = {en} } @article{SzczerbaZukrowskiPrzybylskietal.2016, author = {Szczerba, Wojciech and Zukrowski, Jan and Przybylski, Marek and Sikora, Marcin and Safonova, Olga and Shmeliov, Aleksey and Nicolosi, Valeria and Schneider, Michael and Granath, Tim and Oppmann, Maximilian and Straßer, Marion and Mandel, Karl}, title = {Pushing up the magnetisation values for iron oxide nanoparticles via zinc doping: X-ray studies on the particle's sub-nano structure of different synthesis routes}, series = {Physical Chemistry Chemical Physics}, volume = {18}, journal = {Physical Chemistry Chemical Physics}, number = {36}, doi = {10.1039/c6cp04221j}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187390}, pages = {25221-25229}, year = {2016}, abstract = {The maximum magnetisation (saturation magnetisation) obtainable for iron oxide nanoparticles can be increased by doping the nanocrystals with non-magnetic elements such as zinc. Herein, we closely study how only slightly different synthesis approaches towards such doped nanoparticles strongly influence the resulting sub-nano/atomic structure. We compare two co-precipitation approaches, where we only vary the base (NaOH versus NH\(_3\)), and a thermal decomposition route. These methods are the most commonly applied ones for synthesising doped iron oxide nanoparticles. The measurable magnetisation change upon zinc doping is about the same for all systems. However, the sub-nano structure, which we studied with Mossbauer and X-ray absorption near edge spectroscopy, differs tremendously. We found evidence that a much more complex picture has to be drawn regarding what happens upon Zn doping compared to what textbooks tell us about the mechanism. Our work demonstrates that it is crucial to study the obtained structures very precisely when "playing'' with the atomic order in iron oxide nanocrystals.}, language = {en} } @article{SasseSchilligDierolfetal.2011, author = {Sasse, Christoph and Schillig, Rebecca and Dierolf, Franziska and Weyler, Michael and Schneider, Sabrina and Mogavero, Selene and Rogers, David P. and Morschh{\"a}user, Joachim}, title = {The Transcription Factor Ndt80 Does Not Contribute to Mrr1-, Tac1-, and Upc2-Mediated Fluconazole Resistance in Candida albicans}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69201}, year = {2011}, abstract = {The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis, by the overexpression of genes encoding multidrug efflux pumps or ergosterol biosynthesis enzymes. Zinc cluster transcription factors play a central role in the transcriptional regulation of drug resistance. Mrr1 regulates the expression of the major facilitator MDR1, Tac1 controls the expression of the ABC transporters CDR1 and CDR2, and Upc2 regulates ergosterol biosynthesis (ERG) genes. Gain-of-function mutations in these transcription factors result in constitutive overexpression of their target genes and are responsible for fluconazole resistance in many clinical C. albicans isolates. The transcription factor Ndt80 contributes to the drug-induced upregulation of CDR1 and ERG genes and also binds to the MDR1 and CDR2 promoters, suggesting that it is an important component of all major transcriptional mechanisms of fluconazole resistance. However, we found that Ndt80 is not required for the induction of MDR1 and CDR2 expression by inducing chemicals. CDR2 was even partially derepressed in ndt80D mutants, indicating that Ndt80 is a repressor of CDR2 expression. Hyperactive forms of Mrr1, Tac1, and Upc2 promoted overexpression of MDR1, CDR1/CDR2, and ERG11, respectively, with the same efficiency in the presence and absence of Ndt80. Mrr1- and Tac1-mediated fluconazole resistance was even slightly enhanced in ndt80D mutants compared to wild-type cells. These results demonstrate that Ndt80 is dispensable for the constitutive overexpression of Mrr1, Tac1, and Upc2 target genes and the increased fluconazole resistance of strains that have acquired activating mutations in these transcription factors.}, subject = {Candida albicans}, language = {en} }