@phdthesis{Bothe2021, author = {Bothe, Sebastian Helmut}, title = {Fragmentbasiertes Design von p97-Liganden: Identifizierung von Startstrukturen zur Entwicklung von Protein-Protein-Interaktionsinhibitoren f{\"u}r die SHP-Bindestelle der AAA+ ATPase p97}, doi = {10.25972/OPUS-23911}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239112}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Die AAA+ ATPase p97 ist ein essenzielles Protein, das an einer Vielzahl zellul{\"a}rer Prozesse beteiligt ist und eine Schl{\"u}sselrolle in der Protein-Hom{\"o}ostase spielt. Die funktionale Diversit{\"a}t von p97 beruht auf der Interaktion zahlreicher unterschiedlicher Kofaktoren, die vorwiegend an die N-Dom{\"a}ne von p97 binden. Aufgrund seiner Bedeutung in der Regulierung diverser physiologischer und pathologischer Prozesse stellt p97 eine interessante Zielstruktur f{\"u}r die Entwicklung neuer Wirkstoffe dar, die insbesondere in der Krebstherapie von Bedeutung sein k{\"o}nnte. Bekannte p97-Inhibitoren greifen vor allem die ATPase-Funktion des Proteins an. Ein neuer pharmakologischer Ansatz stellt die Inhibierung der Kofaktorbindung an die N-Dom{\"a}ne dar. Ein solcher Protein-Protein-Interaktionsinhibitor w{\"a}re nicht nur von therapeutischem Interesse, sondern h{\"a}tte auch einen besonderen Nutzen f{\"u}r die Entschl{\"u}sselung molekularer und zellul{\"a}rer Funktionen von p97-Kofaktoren. In dieser Arbeit wurde ein fragmentbasierter Ansatz f{\"u}r die Identifizierung von chemischen Startstrukturen f{\"u}r die Entwicklung eines Protein-Protein- Interaktionsinhibitors verfolgt. Als Zielstruktur wurde die SHP-Bindestelle in der N-Dom{\"a}ne gew{\"a}hlt. Die Identifizierung von Liganden erfolgte sowohl durch computergest{\"u}tzte Methoden (insbesondere virtuelles Screening und Molekulardynamik-Simulationen) als auch experimentell durch biophysikalische Techniken (wie Biolayer-Interferometrie, R{\"o}ntgenstrukturanalyse und ligandbasierte NMR-Techniken). Die Grundlage des computerbasierten Designs stellte eine Analyse der bekannten Kristallstrukturen der p97-Komplexe mit den SHP-Motiven der Kofaktoren UFD1 und Derlin-1 dar. Dar{\"u}ber hinaus dienten Molekulardynamik-Simulationen der Analyse der Wassereigenschaften innerhalb der SHP-Bindestelle. Darauf aufbauend wurden verschiedene Pharmakophormodelle entwickelt, die die Grundlage des im Anschluss durchgef{\"u}hrten virtuellen Screenings und Dockings bildeten. Anhand der Ergebnisse von Molekulardynamik-Simulationen wurden zehn Verbindungen f{\"u}r die experimentelle Validierung ausgew{\"a}hlt. Hiervon konnten zwei Fragmente in STD-NMR- und Biolayer-Interferometrie-Experimenten als Liganden best{\"a}tigt werden. In einem parallel durchgef{\"u}hrten biophysikalischen Fragmentscreening mittels Biolayer-Interferometrie wurden unter mehr als 650 Verbindungen 22 identifiziert, die an die N-Dom{\"a}ne binden. 15 dieser Fragmente wurden durch einen orthogonalen STD-NMR-Assay best{\"a}tigt. F{\"u}nf dieser Verbindungen zeigten Affinit{\"a}ten mit KD-Werten kleiner 500μMund g{\"u}nstigen Ligandeffizienzen. Des Weiteren konnte die Bindungskinetik und Affinit{\"a}t des in der Literatur als p97-Inhibitor berichteten Naturstoffes Xanthohumol bestimmt und eine Bindung an die N-Dom{\"a}ne best{\"a}tigt werden. Zur Identifizierung m{\"o}glicher Bindestellen dieser f{\"u}nf Fragmente wurden mixed-solvent Molekulardynamik-Simulationen durchgef{\"u}hrt. Diese ergaben, dass alle Verbindungen die SHP-Bindestelle in der N-Dom{\"a}ne adressieren. Die Regionen fielen mit hot spots der Kofaktorwechselwirkungen zusammen und stellen somit m{\"o}gliche Ankerpunkte f{\"u}r die Weiterentwicklung dar. F{\"u}r zwei Fragmente konnten die postulierten Bindestellen mittels R{\"o}ntgenstrukturanalyse bzw. STD-NMR-Messungen an p97-Alanin-Mutanten best{\"a}tigt werden. Die erhaltene R{\"o}ntgenstruktur ist die erste p97-Struktur, die ein gebundenes Fragment an der N-Dom{\"a}ne zeigt.}, subject = {Arzneimitteldesign}, language = {de} } @article{BotheHaenzelmannBoehleretal.2022, author = {Bothe, Sebastian and H{\"a}nzelmann, Petra and B{\"o}hler, Stephan and Kehrein, Josef and Zehe, Markus and Wiedemann, Christoph and Hellmich, Ute A. and Brenk, Ruth and Schindelin, Hermann and Sotriffer, Christoph}, title = {Fragment screening using biolayer interferometry reveals ligands targeting the SHP-motif binding site of the AAA+ ATPase p97}, series = {Communications Chemistry}, volume = {5}, journal = {Communications Chemistry}, number = {1}, doi = {10.1038/s42004-022-00782-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300821}, year = {2022}, abstract = {Biosensor techniques have become increasingly important for fragment-based drug discovery during the last years. The AAA+ ATPase p97 is an essential protein with key roles in protein homeostasis and a possible target for cancer chemotherapy. Currently available p97 inhibitors address its ATPase activity and globally impair p97-mediated processes. In contrast, inhibition of cofactor binding to the N-domain by a protein-protein-interaction inhibitor would enable the selective targeting of specific p97 functions. Here, we describe a biolayer interferometry-based fragment screen targeting the N-domain of p97 and demonstrate that a region known as SHP-motif binding site can be targeted with small molecules. Guided by molecular dynamics simulations, the binding sites of selected screening hits were postulated and experimentally validated using protein- and ligand-based NMR techniques, as well as X-ray crystallography, ultimately resulting in the first structure of a small molecule in complex with the N-domain of p97. The identified fragments provide insights into how this region could be targeted and present first chemical starting points for the development of a protein-protein interaction inhibitor preventing the binding of selected cofactors to p97.}, language = {en} } @unpublished{BrennerZinkWitzingeretal.2024, author = {Brenner, Marian and Zink, Christoph and Witzinger, Linda and Keller, Angelika and Hadamek, Kerstin and Bothe, Sebastian and Neuenschwander, Martin and Villmann, Carmen and von Kries, Jens Peter and Schindelin, Hermann and Jeanclos, Elisabeth and Gohla, Antje}, title = {7,8-Dihydroxyflavone is a direct inhibitor of pyridoxal phosphatase}, series = {eLife}, journal = {eLife}, doi = {10.7554/eLife.93094.2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350446}, year = {2024}, abstract = {Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5'-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small molecule screening, protein crystallography and biolayer interferometry, we discover and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.}, language = {en} }