@article{MuellerUlyshenSeiboldetal.2020, author = {M{\"u}ller, J{\"o}rg and Ulyshen, Mike and Seibold, Sebastian and Cadotte, Marc and Chao, Anne and B{\"a}ssler, Claus and Vogel, Sebastian and Hagge, Jonas and Weiß, Ingmar and Baldrian, Petr and Tl{\´a}skal, Vojtěch and Thorn, Simon}, title = {Primary determinants of communities in deadwood vary among taxa but are regionally consistent}, series = {Oikos}, volume = {129}, journal = {Oikos}, number = {10}, doi = {10.1111/oik.07335}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228201}, pages = {1579 -- 1588}, year = {2020}, abstract = {The evolutionary split between gymnosperms and angiosperms has far-reaching implications for the current communities colonizing trees. The inherent characteristics of dead wood include its role as a spatially scattered habitat of plant tissue, transient in time. Thus, local assemblages in deadwood forming a food web in a necrobiome should be affected not only by dispersal ability but also by host tree identity, the decay stage and local abiotic conditions. However, experiments simultaneously manipulating these potential community drivers in deadwood are lacking. To disentangle the importance of spatial distance and microclimate, as well as host identity and decay stage as drivers of local assemblages, we conducted two consecutive experiments, a 2-tree species and 6-tree species experiment with 80 and 72 tree logs, respectively, located in canopy openings and under closed canopies of a montane and a lowland forest. We sampled saproxylic beetles, spiders, fungi and bacterial assemblages from logs. Variation partitioning for community metrics based on a unified framework of Hill numbers showed consistent results for both studies: host identity was most important for sporocarp-detected fungal assemblages, decay stage and host tree for DNA-detected fungal assemblages, microclimate and decay stage for beetles and spiders and decay stage for bacteria. Spatial distance was of minor importance for most taxa but showed the strongest effects for arthropods. The contrasting patterns among the taxa highlight the need for multi-taxon analyses in identifying the importance of abiotic and biotic drivers of community composition. Moreover, the consistent finding of microclimate as the primary driver for saproxylic beetles compared to host identity shows, for the first time that existing evolutionary host adaptions can be outcompeted by local climate conditions in deadwood.}, language = {en} } @article{ThornSeiboldLeverkusetal.2020, author = {Thorn, Simon and Seibold, Sebastian and Leverkus, Alexandro B and Michler, Thomas and M{\"u}ller, J{\"o}rg and Noss, Reed F and Stork, Nigel and Vogel, Sebastian and Lindenmayer, David B}, title = {The living dead: acknowledging life after tree death to stop forest degradation}, series = {Frontiers in Ecology and the Environment}, volume = {18}, journal = {Frontiers in Ecology and the Environment}, number = {9}, doi = {10.1002/fee.2252}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218575}, pages = {505 -- 512}, year = {2020}, abstract = {Global sustainability agendas focus primarily on halting deforestation, yet the biodiversity crisis resulting from the degradation of remaining forests is going largely unnoticed. Forest degradation occurs through the loss of key ecological structures, such as dying trees and deadwood, even in the absence of deforestation. One of the main drivers of forest degradation is limited awareness by policy makers and the public on the importance of these structures for supporting forest biodiversity and ecosystem function. Here, we outline management strategies to protect forest health and biodiversity by maintaining and promoting deadwood, and propose environmental education initiatives to improve the general awareness of the importance of deadwood. Finally, we call for major reforms to forest management to maintain and restore deadwood; large, old trees; and other key ecological structures.}, language = {en} } @article{EliasHeuschmannSchmittetal.2013, author = {Elias, Johannes and Heuschmann, Peter U. and Schmitt, Corinna and Eckhardt, Frithjof and Boehm, Hartmut and Maier, Sebastian and Kolb-M{\"a}urer, Annette and Riedmiller, Hubertus and M{\"u}llges, Wolfgang and Weisser, Christoph and Wunder, Christian and Frosch, Matthias and Vogel, Ulrich}, title = {Prevalence dependent calibration of a predictive model for nasal carriage of methicillin-resistant Staphylococcus aureus}, series = {BMC Infectious Diseases}, journal = {BMC Infectious Diseases}, doi = {10.1186/1471-2334-13-111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96091}, year = {2013}, abstract = {Background Published models predicting nasal colonization with Methicillin-resistant Staphylococcus aureus among hospital admissions predominantly focus on separation of carriers from non-carriers and are frequently evaluated using measures of discrimination. In contrast, accurate estimation of carriage probability, which may inform decisions regarding treatment and infection control, is rarely assessed. Furthermore, no published models adjust for MRSA prevalence. Methods Using logistic regression, a scoring system (values from 0 to 200) predicting nasal carriage of MRSA was created using a derivation cohort of 3091 individuals admitted to a European tertiary referral center between July 2007 and March 2008. The expected positive predictive value of a rapid diagnostic test (GeneOhm, Becton \& Dickinson Co.) was modeled using non-linear regression according to score. Models were validated on a second cohort from the same hospital consisting of 2043 patients admitted between August 2008 and January 2012. Our suggested correction score for prevalence was proportional to the log-transformed odds ratio between cohorts. Calibration before and after correction, i.e. accurate classification into arbitrary strata, was assessed with the Hosmer-Lemeshow-Test. Results Treating culture as reference, the rapid diagnostic test had positive predictive values of 64.8\% and 54.0\% in derivation and internal validation corhorts with prevalences of 2.3\% and 1.7\%, respectively. In addition to low prevalence, low positive predictive values were due to high proportion (> 66\%) of mecA-negative Staphylococcus aureus among false positive results. Age, nursing home residence, admission through the medical emergency department, and ICD-10-GM admission diagnoses starting with "A" or "J" were associated with MRSA carriage and were thus included in the scoring system, which showed good calibration in predicting probability of carriage and the rapid diagnostic test's expected positive predictive value. Calibration for both probability of carriage and expected positive predictive value in the internal validation cohort was improved by applying the correction score. Conclusions Given a set of patient parameters, the presented models accurately predict a) probability of nasal carriage of MRSA and b) a rapid diagnostic test's expected positive predictive value. While the former can inform decisions regarding empiric antibiotic treatment and infection control, the latter can influence choice of screening method.}, language = {en} } @article{VogelPrinzingBussleretal.2021, author = {Vogel, Sebastian and Prinzing, Andreas and Bußler, Heinz and M{\"u}ller, J{\"o}rg and Schmidt, Stefan and Thorn, Simon}, title = {Abundance, not diversity, of host beetle communities determines abundance and diversity of parasitoids in deadwood}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {11}, doi = {10.1002/ece3.7535}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238892}, pages = {6881 -- 6888}, year = {2021}, abstract = {Most parasites and parasitoids are adapted to overcome defense mechanisms of their specific hosts and hence colonize a narrow range of host species. Accordingly, an increase in host functional or phylogenetic dissimilarity is expected to increase the species diversity of parasitoids. However, the local diversity of parasitoids may be driven by the accessibility and detectability of hosts, both increasing with increasing host abundance. Yet, the relative importance of these two mechanisms remains unclear. We parallelly reared communities of saproxylic beetle as potential hosts and associated parasitoid Hymenoptera from experimentally felled trees. The dissimilarity of beetle communities was inferred from distances in seven functional traits and from their evolutionary ancestry. We tested the effect of host abundance, species richness, functional, and phylogenetic dissimilarities on the abundance, species richness, and Shannon diversity of parasitoids. Our results showed an increase of abundance, species richness, and Shannon diversity of parasitoids with increasing beetle abundance. Additionally, abundance of parasitoids increased with increasing species richness of beetles. However, functional and phylogenetic dissimilarity showed no effect on the diversity of parasitoids. Our results suggest that the local diversity of parasitoids, of ephemeral and hidden resources like saproxylic beetles, is highest when resources are abundant and thereby detectable and accessible. Hence, in some cases, resources do not need to be diverse to promote parasitoid diversity.}, language = {en} } @phdthesis{Vogel2022, author = {Vogel, Sebastian}, title = {Determinants of saproxylic biodiversity and conclusions for conservation}, doi = {10.25972/OPUS-28926}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289266}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Over the past centuries, anthropogenic utilization has fundamentally changed the appearance of European forest ecosystems. Constantly growing and changing demands have led to an enormous decline in ecological key elements and a structural homogenization of most forests. These changes have been accompanied by widespread declines of many forest-dwelling and especially saproxylic, i.e. species depending on deadwood. In order to counteract this development, various conservation strategies have been developed, but they primarily focus on a quantitative deadwood enrichment. However, the diversity of saproxylic species is furthermore driven by a variety of abiotic and biotic determinants as well as interactions between organisms. A detailed understanding of these processes has so far been largely lacking. The aim of the present thesis was therefore to improve the existing ecological knowledge of determinants influencing saproxylic species and species communities in order to provide the basis for evidence-based and adapted conservation measures. In chapter II of this thesis, I first investigated the impact of sun exposure, tree species, and their combination on saproxylic beetles, wood-inhabiting fungi, and spiders. Therefore, logs and branches of six tree species were set up under different sun exposures in an experimental approach. The impact of sun exposure and tree species strongly differed among single saproxylic taxa as well as diameters of deadwood. All investigated taxa were affected by sun exposure, whereby sun exposure resulted in a higher alpha-diversity of taxa recorded in logs and a lower alpha-diversity of saproxylic beetles reared from branches compared to shading by canopy. Saproxylic beetles and wood-inhabiting fungi as obligate saproxylic species were additionally affected by tree species. In logs, the respective impact of both determinants also resulted in divergent community compositions. Finally, a rarefaction/extrapolation method was used to evaluate the effectiveness of different combinations of tree species and sun exposure for the conservation of saproxylic species diversity. Based on this procedure, a combination of broadleaved and coniferous as well as hard- and softwood tree species was identified to support preferably high levels of saproxylic species diversity. The aim of chapter III was to evaluate the individual conservational importance of tree species for the protection of saproxylic beetles. For this, the list of tree species sampled for saproxylic beetles was increased to 42 different tree species. The considered tree species represented large parts of taxonomic and phylogenetic diversity native to Central Europe as well as the most important non-native tree species of silvicultural interest. Freshly cut branches were set up for one year and saproxylic beetles were reared afterwards for two subsequent years. The study revealed that some tree species, in particular Quercus sp., host a particular high diversity of saproxylic beetles, but tree species with a comparatively medium or low overall diversity were likewise important for red-listed saproxylic beetle species. Compared to native tree species, non-native tree species hosted a similar overall species diversity of saproxylic beetles but differed in community composition. In chapter IV, I finally analysed the interactions of host beetle diversity and the diversity of associated parasitoids by using experimentally manipulated communities of saproxylic beetles and parasitoid Hymenoptera as a model system. Classical approaches of species identification for saproxylic beetles were combined with DNA-barcoding for parasitoid Hymenoptera. The diversity of the host communities was inferred from their phylogenetic composition as well as differences in seven functional traits. Abundance, species richness, and Shannon-diversity of parasitoid Hymenoptera increased with increasing host abundance. However, the phylogenetic and functional dissimilarity of host communities showed no influence on the species communities of parasitoid Hymenoptera. The results clearly indicate an abundance-driven system in which the general availability, not necessarily the diversity of potential hosts, is decisive. In summary, the present thesis corroborates the general importance of deadwood heterogeneity for the diversity of saproxylic species by combining different experimental approaches. In order to increase their efficiency, conservation strategies for saproxylic species should generally promote deadwood from different tree species under different conditions of sun exposure on landscape-level in addition to the present enrichment of a certain deadwood amount. The most effective combinations of tree species should consider broadleaved and coniferous as well as hard- and softwood tree species. Furthermore, in addition to dominant tree species, special attention should be given to native, subdominant, silviculturally unimportant, and rare tree species.}, language = {en} } @article{VogelGossnerMergneretal.2020, author = {Vogel, Sebastian and Gossner, Martin M. and Mergner, Ulrich and M{\"u}ller, J{\"o}rg and Thorn, Simon}, title = {Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: An experimental approach}, series = {Journal of Applied Ecology}, volume = {57}, journal = {Journal of Applied Ecology}, number = {10}, doi = {10.1111/1365-2664.13648}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214614}, pages = {2075 -- 2085}, year = {2020}, abstract = {The enrichment of deadwood is essential for the conservation of saproxylic biodiversity in managed forests. However, existing strategies focus on a cost-intensive increase of deadwood amount, while largely neglecting increasing deadwood diversity. Deadwood objects, that is logs and branches, from six tree species were experimentally sun exposed, canopy shaded and artificially shaded for 4 years, after which the alpha-, beta- and gamma-diversity of saproxylic beetles, wood-inhabiting fungi and spiders were analysed. Analyses of beta-diversity included the spatial distance between exposed deadwood objects. A random-drawing procedure was used to identify the combination of tree species and sun exposure that yielded the highest gamma-diversity at a minimum of exposed deadwood amount. In sun-exposed plots, species numbers in logs were higher than in shaded plots for all taxa, while in branches we observed the opposite for saproxylic beetles. Tree species affected the species numbers only of saproxylic beetles and wood-inhabiting fungi. The beta-diversity of saproxylic beetles and wood-inhabiting fungi among logs was influenced by sun exposure and tree species, but beta-diversity of spiders by sun exposure only. For all saproxylic taxa recorded in logs, differences between communities increased with increasing spatial distance. A combination of canopy-shaded Carpinus logs and sun-exposed Populus logs resulted in the highest species numbers of all investigated saproxylic taxa among all possible combinations of tree species and sun-exposure treatments. Synthesis and applications. We recommend incorporating the enrichment of different tree species and particularly the variation in sun exposure into existing strategies of deadwood enrichment. Based on the results of our study, we suggest to combine the logs of softwood broadleaf tree species (e.g. Carpinus, Populus), hardwood broadleaf tree species (e.g. Quercus) and coniferous tree species (e.g. Pinus) under different conditions of sun exposure and distribute them spatially in a landscape to maximize the beneficial effects on overall diversity.}, language = {en} } @article{VogelBusslerFinnbergetal.2021, author = {Vogel, Sebastian and Bussler, Heinz and Finnberg, Sven and M{\"u}ller, J{\"o}rg and Stengel, Elisa and Thorn, Simon}, title = {Diversity and conservation of saproxylic beetles in 42 European tree species: an experimental approach using early successional stages of branches}, series = {Insect Conservation and Diversity}, volume = {14}, journal = {Insect Conservation and Diversity}, number = {1}, doi = {10.1111/icad.12442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218401}, pages = {132 -- 143}, year = {2021}, abstract = {Tree species diversity is important to maintain saproxylic beetle diversity in managed forests. Yet, knowledge about the conservational importance of single tree species and implications for forest management and conservation practices are lacking. We exposed freshly cut branch-bundles of 42 tree species, representing tree species native and non-native to Europe, under sun-exposed and shaded conditions for 1 year. Afterwards, communities of saproxylic beetles were reared ex situ for 2 years. We tested for the impact of tree species and sun exposure on alpha-, beta-, and gamma-diversity as well as composition of saproxylic beetle communities. Furthermore, the number of colonised tree species by each saproxylic beetle species was determined. Tree species had a lower impact on saproxylic beetle communities compared to sun exposure. The diversity of saproxylic beetles varied strongly among tree species, with highest alpha- and gamma-diversity found in Quercus petraea. Red-listed saproxylic beetle species occurred ubiquitously among tree species. We found distinct differences in the community composition of broadleaved and coniferous tree species, native and non-native tree species as well as sun-exposed and shaded deadwood. Our study enhances the understanding of the importance of previously understudied and non-native tree species for the diversity of saproxylic beetles. To improve conservation practices for saproxylic beetles and especially red-listed species, we suggest a stronger incorporation of tree species diversity and sun exposure of into forest management strategies, including the enrichment of deadwood from native and with a specific focus on locally rare or silviculturally less important tree species.}, language = {en} }