@article{RajendranRajendranGuptaetal.2022, author = {Rajendran, Ranjithkumar and Rajendran, Vinothkumar and Gupta, Liza and Shirvanchi, Kian and Schunin, Darja and Karnati, Srikanth and Giraldo-Vel{\´a}squez, Mario and Berghoff, Martin}, title = {Interferon beta-1a versus combined interferon beta-1a and oligodendrocyte-specific FGFR1 deletion in experimental autoimmune encephalomyelitis}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {20}, issn = {1422-0067}, doi = {10.3390/ijms232012183}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290401}, year = {2022}, abstract = {Recombinant beta interferons-1 (IFNβ-1) are used as first line therapies in patients with relapsing multiple sclerosis (MS), a chronic inflammatory and neurodegenerative disease of the CNS. IFNβ-1a/b has moderate effects on the prevention of relapses and slowing of disease progression. Fibroblast growth factors (FGFs) and FGF receptors (FGFRs) are known to play a key role in the pathology of MS and its model EAE. To investigate the effects of short-term treatment with s.c. IFNβ-1a versus the combined application of s.c. IFNβ-1a and oligodendrocyte-specific deletion of FGFR1 (Fgfr1\(^{ind-/-}\) mice) in MOG\(_{35-55}\)-induced EAE. IFNβ-1a (30 mg/kg) was applied s.c. from days 0-7 p.i. of EAE in controls and Fgfr1\(^{ind-/-}\) mice. FGFR signaling proteins associated with inflammation/degeneration in MS/EAE were analyzed by western blot in the spinal cord. Further, FGFR1 in Oli-neu oligodendrocytes were inhibited by PD166866 and treated with IFNβ-1a (400 ng/mL). Application of IFNβ-1a over 8 days resulted in less symptoms only at the peak of disease (days 9-11) compared to controls. Application of IFNβ-1a in Fgfr1\(^{ind-/-}\) mice resulted in less symptoms primarily in the chronic phase of EAE. Fgfr1\(^{ind-/-}\) mice treated with IFNβ-1a showed increased expression of pERK and BDNF. In Oli-neu oligodendrocytes, treatment with PD166866 and IFNβ-1a also showed an increased expression of pERK and BDNF/TrkB. These data suggest that the beneficial effects in the chronic phase of EAE and on signaling molecules associated with ERK and BDNF expression are caused by the modulation of FGFR1 and not by interferon beta-1a. FGFR may be a potential target for therapy in MS.}, language = {en} }