@article{ShityakovSohajdaPuskasetal.2014, author = {Shityakov, Sergey and Sohajda, Tam{\´a}s and Puskas, Istav{\´a}n and Roewer, Norbert and F{\"o}rster, Carola and Broscheit, Jens-Albert}, title = {Ionization States, Cellular Toxicity and Molecular Modeling Studies of Midazolam Complexed with Trimethyl-β-Cyclodextrin}, series = {Molecules}, volume = {19}, journal = {Molecules}, number = {10}, doi = {10.3390/molecules191016861}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119186}, pages = {16861-76}, year = {2014}, abstract = {We investigated the ionization profiles for open-ring (OR) and closed-ring (CR) forms of midazolam and drug-binding modes with heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (trimethyl-β-cyclodextrin; TRIMEB) using molecular modeling techniques and quantum mechanics methods. The results indicated that the total net charges for different molecular forms of midazolam tend to be cationic for OR and neutral for CR at physiological pH levels. The thermodynamic calculations demonstrated that CR is less water-soluble than OR, mainly due to the maximal solvation energy (ΔG(CR)(solv = -9.98 kcal·mol ⁻¹), which has a minimal ΔG(OR)(solv) of -67.01 kcal·mol⁻¹. A cell viability assay did not detect any signs of TRIMEB and OR/CR-TRIMEB complex toxicity on the cEND cells after 24 h of incubation in either Dulbecco's Modified Eagles Medium or in heat-inactivated human serum. The molecular docking studies identified the more flexible OR form of midazolam as being a better binder to TRIMEB with the fluorophenyl ring introduced inside the amphiphilic cavity of the host molecule. The OR binding affinity was confirmed by a minimal Gibbs free energy of binding (ΔG(bind)) value of -5.57 ± 0.02 kcal·mol⁻¹, an equilibrium binding constant (K(b)) of 79.89 ± 2.706 μM, and a ligand efficiency index (LE(lig)) of -0.21 ± 0.001. Our current data suggest that in order to improve the clinical applications of midazolam via its complexation with trimethyl-β-cyclodextrin to increase drug's overall aqueous solubility, it is important to concern the different forms and ionization states of this anesthetic. All mean values are indicated with their standard deviations.}, language = {en} } @article{ShityakovDandekar2010, author = {Shityakov, Sergey and Dandekar, Thomas}, title = {Lead expansion and virtual screening of Indinavir derivate HIV-1 protease inhibitors using pharmacophoric - shape similarity scoring function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67824}, year = {2010}, abstract = {Indinavir (Crivaxan®) is a potent inhibitor of the HIV (human immunodeficiency virus) protease. This enzyme has an important role in viral replication and is considered to be very attractive target for new antiretroviral drugs. However, it becomes less effective due to highly resistant new viral strains of HIV, which have multiple mutations in their proteases. For this reason, we used a lead expansion method to create a new set of compounds with a new mode of action to protease binding site. 1300 compounds chemically diverse from the initial hit were generated and screened to determine their ability to interact with protease and establish their QSAR properties. Further computational analyses revealed one unique compound with different protease binding ability from the initial hit and its role for possible new class of protease inhibitors is discussed in this report.}, subject = {Proteasen}, language = {en} } @article{FoersterShityakovScheperetal.2022, author = {F{\"o}rster, Carola Y. and Shityakov, Sergey and Scheper, Verena and Lenarz, Thomas}, title = {Linking cerebrovascular dysfunction to age-related hearing loss and Alzheimer's disease — are systemic approaches for diagnosis and therapy required?}, series = {Biomolecules}, volume = {12}, journal = {Biomolecules}, number = {11}, issn = {2218-273X}, doi = {10.3390/biom12111717}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297552}, year = {2022}, abstract = {Alzheimer's disease (AD), the most common cause of dementia in the elderly, is a neurodegenerative disorder associated with neurovascular dysfunction, cognitive decline, and the accumulation of amyloid β peptide (Aβ) in the brain and tau-related lesions in neurons termed neurofibrillary tangles (NFTs). Aβ deposits and NFT formation are the central pathological hallmarks in AD brains, and the majority of AD cases have been shown to exhibit a complex combination of systemic comorbidities. While AD is the foremost common cause of dementia in the elderly, age-related hearing loss (ARHL) is the most predominant sensory deficit in the elderly. During aging, chronic inflammation and resulting endothelial dysfunction have been described and might be key contributors to AD; we discuss an intriguing possible link between inner ear strial microvascular pathology and blood-brain barrier pathology and present ARHL as a potentially modifiable and treatable risk factor for AD development. We present compelling evidence that ARHL might well be seen as an important risk factor in AD development: progressive hearing impairment, leading to social isolation, and its comorbidities, such as frailty, falls, and late-onset depression, link ARHL with cognitive decline and increased risk of dementia, rendering it tempting to speculate that ARHL might be a potential common molecular and pathological trigger for AD. Additionally, one could speculate that amyloid-beta might damage the blood-labyrinth barrier as it does to the blood-brain barrier, leading to ARHL pathology. Finally, there are options for the treatment of ARHL by targeted neurotrophic factor supplementation to the cochlea to improve cognitive outcomes; they can also prevent AD development and AD-related comorbidity in the future.}, language = {en} } @article{ShityakovBencurovaFoersteretal.2020, author = {Shityakov, Sergey and Bencurova, Elena and F{\"o}rster, Carola and Dandekar, Thomas}, title = {Modeling of shotgun sequencing of DNA plasmids using experimental and theoretical approaches}, series = {BMC Bioinformatics}, volume = {2020}, journal = {BMC Bioinformatics}, doi = {10.1186/s12859-020-3461-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229169}, year = {2020}, abstract = {Background Processing and analysis of DNA sequences obtained from next-generation sequencing (NGS) face some difficulties in terms of the correct prediction of DNA sequencing outcomes without the implementation of bioinformatics approaches. However, algorithms based on NGS perform inefficiently due to the generation of long DNA fragments, the difficulty of assembling them and the complexity of the used genomes. On the other hand, the Sanger DNA sequencing method is still considered to be the most reliable; it is a reliable choice for virtual modeling to build all possible consensus sequences from smaller DNA fragments. Results In silico and in vitro experiments were conducted: (1) to implement and test our novel sequencing algorithm, using the standard cloning vectors of different length and (2) to validate experimentally virtual shotgun sequencing using the PCR technique with the number of cycles from 1 to 9 for each reaction. Conclusions We applied a novel algorithm based on Sanger methodology to correctly predict and emphasize the performance of DNA sequencing techniques as well as in de novo DNA sequencing and its further application in synthetic biology. We demonstrate the statistical significance of our results.}, language = {en} } @phdthesis{Shityakov2011, author = {Shityakov, Sergey}, title = {Molecular modelling and simulation of retroviral proteins and nanobiocomposites}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56960}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Molecular modelling and simulation are powerful methods in providing important in-formation on different biological systems to elucidate their structural and functional proper-ties, which cannot be determined in experiment. These methods are applied to analyse versa-tile biological systems: lipid membrane bilayers stabilized by an intercalated single wall carbon nanotube and retroviral proteins such as HIV protease and integrase. HIV-1 integrase has nuclear localization signals (NLS) which play a crucial role in nuclear import of viral preintegration complex (PIC). However, the detailed mechanisms of PIC formation and its nuclear transport are not known. Previously it was shown that NLSs bind to the cell transport machinery e.g. proteins of nuclear pore complex such as transportins. I investigated the interaction of this viral protein HIV-1 integrase with proteins of the nuclear pore complex such as transportin-SR2 (Shityakov et al., 2010). I showed that the transportin-SR2 in nuclear import is required due to its interaction with the HIV-1 integrase. I analyzed key domain interaction, and hydrogen bond formation in transportin-SR2. These results were discussed in comparison to other retroviral species such as foamy viruses to better understand this specific and efficient retroviral trafficking route. The retroviral nuclear import was next analyzed in experiments regarding the retroviral ability to infect nondividing cells. To accomplish the gene transfer task successfully, ret-roviruses must efficiently transduce different cell cultures at different phases of cell cycle. However, promising and safe foamy viral vectors used for gene transfer are unable to effi-ciently infect quiescent cells. This drawback was due to their inability to create a preintegra-tion complex (PIC) for nuclear import of retroviral DNA. On the contrary, the lentiviral vec-tors are not dependant on cell cycle. In the course of reverse transcription the polypurine tract (PPT) is believed to be crucial for PIC formation. In this thesis, I compared the transduction frequencies of PPT modified FV vectors with lentiviral vectors in nondividing and dividing alveolar basal epithelial cells from human adenocarcinoma (A549) by using molecular cloning, transfection and transduction techniques and several other methods. In contrast to lentiviral vectors, FV vectors were not able to effi-ciently transduce nondividing cell (Shityakov and Rethwilm, unpublished data). Despite the findings, which support the use of FV vectors as a safe and efficient alternative to lentiviral vectors, major limitation in terms of foamy-based retroviral vector gene transfer in quiescent cells still remains. Many attempts have been made recently to search for the potential molecules as pos-sible drug candidates to treat HIV infection for over decades now. These molecules can be retrieved from chemical libraries or can be designed on a computer screen and then synthe-sized in a laboratory. Most notably, one could use the computerized structure as a reference to determine the types of molecules that might block the enzyme. Such structure-based drug design strategies have the potential to save off years and millions of dollars compared to a more traditional trial-and-error drug development process. After the crystal structure of the HIV-encoded protease enzyme had been elucidated, computer-aided drug design played a pivotal role in the development of new compounds that inhibit this enzyme which is responsible for HIV maturation and infectivity. Promising repre-sentatives of these compounds have recently found their way to patients. Protease inhibitors show a powerful sustained suppression of HIV-1 replication, especially when used in combi-nation therapy regimens. However, these drugs are becoming less effective to more resistant HIV strains due to multiple mutations in the retroviral proteases. In computational drug design I used molecular modelling methods such as lead ex-pansion algorithm (Tripos®) to create a virtual library of compounds with different binding affinities to protease binding site. In addition, I heavily applied computer assisted combinato-rial chemistry approaches to design and optimize virtual libraries of protease inhibitors and performed in silico screening and pharmacophore-similarity scoring of these drug candidates. Further computational analyses revealed one unique compound with different protease bind-ing ability from the initial hit and its role for possible new class of protease inhibitors is dis-cussed (Shityakov and Dandekar, 2009). A number of atomistic models were developed to elucidate the nanotube behaviour in lipid bilayers. However, none of them provided useful information for CNT effect upon the lipid membrane bilayer for implementing all-atom models that will allow us to calculate the deviations of lipid molecules from CNT with atomistic precision. Unfortunately, the direct experimental investigation of nanotube behaviour in lipid bilayer remains quite a tricky prob-lem opening the door before the molecular simulation techniques. In this regard, more de-tailed multi-scale simulations are needed to clearly understand the stabilization characteristics of CNTs in hydrophobic environment. The phenomenon of an intercalated single-wall carbon nanotube in the center of lipid membrane was extensively studied and analyzed. The root mean square deviation and root mean square fluctuation functions were calculated in order to measure stability of lipid mem-branes. The results indicated that an intercalated carbon nanotube restrains the conformational freedom of adjacent lipids and hence has an impact on the membrane stabilization dynamics (Shityakov and Dandekar, 2011). On the other hand, different lipid membranes may have dissimilarities due to the differing abilities to create a bridge formation between the adherent lipid molecules. The results derived from this thesis will help to develop stable nanobiocom-posites for construction of novel biomaterials and delivery of various biomolecules for medi-cine and biology.}, subject = {Kohlenstoff}, language = {en} } @article{ShityakovBroscheitFoerster2013, author = {Shityakov, Sergey and Broscheit, Jens and F{\"o}rster, Carola}, title = {Multidrug resistance protein P-gp interaction with nanoparticles (fullerenes and carbon nanotube) to assess their drug delivery potential: a theoretical molecular docking study.}, series = {International journal of computational biology and drug design}, volume = {6}, journal = {International journal of computational biology and drug design}, number = {4}, doi = {10.1504/IJCBDD.2013.056801}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132089}, pages = {343-357}, year = {2013}, abstract = {P-glycoprotein (P-gp)-mediated efflux system plays an important role to maintain chemical balance in mammalian cells for endogenous and exogenous chemical compounds. However, despite the extensive characterisation of P-gp potential interaction with drug-like molecules, the interaction of carbon nanoparticles with this type of protein molecule is poorly understood. Thus, carbon nanoparticles were analysed, such as buckminsterfullerenes (C20, C60, C70), capped armchair single-walled carbon nanotube (SWCNT or C168), and P-gp interactions using different molecular docking techniques, such as gradient optimisation algorithm (ADVina), Lamarckian genetic algorithm (FastDock), and shape-based approach (PatchDock) to estimate the binding affinities between these structures. The theoretical results represented in this work show that fullerenes might be P-gp binders because of low levels of Gibbs free energy of binding (ΔG) and potential of mean force (PMF) values. Furthermore, the SWCNT binding is energetically unfavourable, leading to a total decrease in binding affinity by elevation of the residual area (Ares), which also affects the π-π stacking mechanisms. Further, the obtained data could potentially call experimental studies using carbon nanostructures, such as SWCNT for development of drug delivery vehicles, to administer and assess drug-like chemical compounds to the target cells since organisms probably did not develop molecular sensing elements to detect these types of carbon molecules.}, language = {en} } @article{BencurovaShityakovSchaacketal.2022, author = {Bencurova, Elena and Shityakov, Sergey and Schaack, Dominik and Kaltdorf, Martin and Sarukhanyan, Edita and Hilgarth, Alexander and Rath, Christin and Montenegro, Sergio and Roth, G{\"u}nter and Lopez, Daniel and Dandekar, Thomas}, title = {Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.869111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283033}, year = {2022}, abstract = {The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories.}, language = {en} } @article{ShityakovFoerster2013, author = {Shityakov, Sergey and F{\"o}rster, Carola}, title = {Pharmacokinetic Delivery and Metabolizing Rate of Nicardipine Incorporated in Hydrophilic and Hydrophobic Cyclodextrins Using Two-Compartment Mathematical Model}, series = {The Scientific World Journal}, volume = {2013}, journal = {The Scientific World Journal}, number = {131358}, doi = {10.1155/2013/131358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130519}, pages = {9}, year = {2013}, abstract = {The dispersion routes of cyclodextrin complexes with nicardipine (NC), such as hydrophilic hydroxypropyl-\(\beta\)-cyclodextrin (NC/HP\(\beta\)CD) and hydrophobic triacetyl-\(\beta\)-cyclodextrin (NC/TA\(\beta\)CD), through the body for controlled drug delivery and sustained release have been examined. The two-compartment pharmacokinetic model described the mechanisms of how the human body handles with ingestion of NC-cyclodextrin complexes in gastrointestinal tract (GI), distribution in plasma, and their metabolism in the liver. The model showed that drug bioavailability was significantly improved after oral administration of cyclodextrin complexes. The mathematical significance of this study to predict nicardipine delivery using pharmacokinetic two-compartment mathematical model with linear ordinary differential equations (ODE) approach represents a valuable tool to emphasize its effectiveness and metabolizing rate and diminish the side effects.}, language = {en} } @article{KarnatiGuntasRajendranetal.2022, author = {Karnati, Srikanth and Guntas, Gulcan and Rajendran, Ranjithkumar and Shityakov, Sergey and H{\"o}ring, Marcus and Liebisch, Gerhard and Kosanovic, Djuro and Erg{\"u}n, S{\"u}leyman and Nagai, Michiaki and F{\"o}rster, Carola Y.}, title = {Quantitative lipidomic analysis of Takotsubo syndrome patients' serum}, series = {Frontiers in Cardiovascular Medicine}, volume = {9}, journal = {Frontiers in Cardiovascular Medicine}, number = {797154}, issn = {2297-055X}, doi = {10.3389/fcvm.2022.797154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270832}, year = {2022}, abstract = {Takotsubo syndrome (TTS), also known as the transient left ventricular apical ballooning syndrome, is in contemporary times known as novel acute cardiac syndrome. It is characterized by transient left ventricular apical akinesis and hyperkinesis of the basal left ventricular portions. Although the precise etiology of TTS is unknown, events like the sudden release of stress hormones, such as the catecholamines and the increased inflammatory status might be plausible causes leading to the cardiovascular pathologies. Recent studies have highlighted that an imbalance in lipid accumulation might promote a deviant immune response as observed in TTS. However, there is no information on comprehensive profiling of serum lipids of TTS patients. Therefore, we investigated a detailed quantitative lipid analysis of TTS patients using ES-MSI. Our results showed significant differences in the majority of lipid species composition in the TTS patients compared to the control group. Furthermore, the computational analyses presented was able to link the altered lipids to the pro-inflammatory cytokines and disseminate possible mechanistic pathways involving TNFα and IL-6. Taken together, our study provides an extensive quantitative lipidome of TTS patients, which may provide a valuable Pre-diagnostic tool. This would facilitate the elucidation of the underlying mechanisms of the disease and to prevent the development of TTS in the future.}, language = {en} } @article{SarukhanyanShityakovDandekar2020, author = {Sarukhanyan, Edita and Shityakov, Sergey and Dandekar, Thomas}, title = {Rational drug design of Axl tyrosine kinase type I inhibitors as promising candidates against cancer}, series = {Frontiers in Chemistry}, volume = {7}, journal = {Frontiers in Chemistry}, number = {920}, issn = {2296-2646}, doi = {10.3389/fchem.2019.00920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199505}, year = {2020}, abstract = {The high level of Axl tyrosine kinase expression in various cancer cell lines makes it an attractive target for the development of anti-cancer drugs. In this study, we carried out several sets of in silico screening for the ATP-competitive Axl kinase inhibitors based on different molecular docking protocols. The best drug-like candidates were identified, after parental structure modifications, by their highest affinity to the target protein. We found that our newly designed compound R5, a derivative of the R428 patented analog, is the most promising inhibitor of the Axl kinase according to the three molecular docking algorithms applied in the study. The molecular docking results are in agreement with the molecular dynamics simulations using the MM-PBSA/GBSA implicit solvation models, which confirm the high affinity of R5 toward the protein receptor. Additionally, the selectivity test against other kinases also reveals a high affinity of R5 toward ABL1 and Tyro3 kinases, emphasizing its promising potential for the treatment of malignant tumors.}, language = {en} }