@article{VogelPrinzingBussleretal.2021, author = {Vogel, Sebastian and Prinzing, Andreas and Bußler, Heinz and M{\"u}ller, J{\"o}rg and Schmidt, Stefan and Thorn, Simon}, title = {Abundance, not diversity, of host beetle communities determines abundance and diversity of parasitoids in deadwood}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {11}, doi = {10.1002/ece3.7535}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238892}, pages = {6881 -- 6888}, year = {2021}, abstract = {Most parasites and parasitoids are adapted to overcome defense mechanisms of their specific hosts and hence colonize a narrow range of host species. Accordingly, an increase in host functional or phylogenetic dissimilarity is expected to increase the species diversity of parasitoids. However, the local diversity of parasitoids may be driven by the accessibility and detectability of hosts, both increasing with increasing host abundance. Yet, the relative importance of these two mechanisms remains unclear. We parallelly reared communities of saproxylic beetle as potential hosts and associated parasitoid Hymenoptera from experimentally felled trees. The dissimilarity of beetle communities was inferred from distances in seven functional traits and from their evolutionary ancestry. We tested the effect of host abundance, species richness, functional, and phylogenetic dissimilarities on the abundance, species richness, and Shannon diversity of parasitoids. Our results showed an increase of abundance, species richness, and Shannon diversity of parasitoids with increasing beetle abundance. Additionally, abundance of parasitoids increased with increasing species richness of beetles. However, functional and phylogenetic dissimilarity showed no effect on the diversity of parasitoids. Our results suggest that the local diversity of parasitoids, of ephemeral and hidden resources like saproxylic beetles, is highest when resources are abundant and thereby detectable and accessible. Hence, in some cases, resources do not need to be diverse to promote parasitoid diversity.}, language = {en} } @article{KortmannRothBuseetal.2022, author = {Kortmann, Mareike and Roth, Nicolas and Buse, J{\"o}rn and Hilszczański, Jacek and Jaworski, Tomasz and Morini{\`e}re, J{\´e}r{\^o}me and Seidl, Rupert and Thorn, Simon and M{\"u}ller, J{\"o}rg C.}, title = {Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations}, series = {Ecological Applications}, volume = {32}, journal = {Ecological Applications}, number = {2}, doi = {10.1002/eap.2516}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276392}, year = {2022}, abstract = {Natural disturbances are increasing around the globe, also impacting protected areas. Although previous studies have indicated that natural disturbances result in mainly positive effects on biodiversity, these analyses mostly focused on a few well established taxonomic groups, and thus uncertainty remains regarding the comprehensive impact of natural disturbances on biodiversity. Using Malaise traps and meta-barcoding, we studied a broad range of arthropod taxa, including dark and cryptic taxa, along a gradient of bark beetle disturbance severities in five European national parks. We identified order-level community thresholds of disturbance severity and classified barcode index numbers (BINs; a cluster system for DNA sequences, where each cluster corresponds to a species) as negative or positive disturbance indicators. Negative indicator BINs decreased above thresholds of low to medium disturbance severity (20\%-30\% of trees killed), whereas positive indicator BINs benefited from high disturbance severity (76\%-98\%). BINs allocated to a species name contained nearly as many positive as negative disturbance indicators, but dark and cryptic taxa, particularly Diptera and Hymenoptera in our data, contained higher numbers of negative disturbance indicator BINs. Analyses of changes in the richness of BINs showed variable responses of arthropods to disturbance severity at lower taxonomic levels, whereas no significant signal was detected at the order level due to the compensatory responses of the underlying taxa. We conclude that the analyses of dark taxa can offer new insights into biodiversity responses to disturbances. Our results suggest considerable potential for forest management to foster arthropod diversity, for example by maintaining both closed-canopy forests (>70\% cover) and open forests (<30\% cover) on the landscape.}, language = {en} } @techreport{MuellerSchererLorenzenAmmeretal.2022, author = {M{\"u}ller, J{\"o}rg and Scherer-Lorenzen, Michael and Ammer, Christian and Eisenhauer, Nico and Seidel, Dominik and Schuldt, Bernhard and Biedermann, Peter and Schmitt, Thomas and K{\"u}nzer, Claudia and Wegmann, Martin and Cesarz, Simone and Peters, Marcell and Feldhaar, Heike and Steffan-Dewenter, Ingolf and Claßen, Alice and B{\"a}ssler, Claus and von Oheimb, Goddert and Fichtner, Andreas and Thorn, Simon and Weisser, Wolfgang}, title = {BETA-FOR: Erh{\"o}hung der strukturellen Diversit{\"a}t zwischen Waldbest{\"a}nden zur Erh{\"o}hung der Multidiversit{\"a}t und Multifunktionalit{\"a}t in Produktionsw{\"a}ldern. Antragstext f{\"u}r die DFG Forschungsgruppe FOR 5375}, doi = {10.25972/OPUS-29084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290849}, pages = {210}, year = {2022}, abstract = {Der in j{\"u}ngster Zeit beobachtete kontinuierliche Verlust der β-Diversit{\"a}t in {\"O}kosystemen deutet auf homogene Gemeinschaften auf Landschaftsebene hin, was haupts{\"a}chlich auf die steigende Landnutzungsintensit{\"a}t zur{\"u}ckgef{\"u}hrt wird. Biologische Vielfalt ist mit zahlreichen Funktionen und der Stabilit{\"a}t von {\"O}kosystemen verkn{\"u}pft. Es ist daher zu erwarten, dass eine abnehmende β-Diversit{\"a}t auch die Multifunktionalit{\"a}t verringert. Wir kombinieren hier Fachwissen aus der Forstwissenschaft, der {\"O}kologie, der Fernerkundung, der chemischen {\"O}kologie und der Statistik in einem gemeinschaftlichen und experimentellen β-Diversit{\"a}tsdesign, um einerseits die Auswirkungen der Homogenisierung zu bewerten und andererseits Konzepte zu entwickeln, um negative Auswirkungen durch Homogenisierung in W{\"a}ldern r{\"u}ckg{\"a}ngig zu machen. Konkret werden wir uns mit der Frage besch{\"a}ftigen, ob die Verbesserung der strukturellen β-Komplexit{\"a}t (ESBC) in W{\"a}ldern durch Waldbau oder nat{\"u}rliche St{\"o}rungen die Biodiversit{\"a}t und Multifunktionalit{\"a}t in ehemals homogenen Produktionsw{\"a}ldern erh{\"o}hen kann. Unser Ansatz wird m{\"o}gliche Mechanismen hinter den beobachteten Homogenisierungs-Diversit{\"a}ts-Beziehungen identifizieren und zeigen, wie sich diese auf die Multifunktionalit{\"a}t auswirken. An elf Standorten in ganz Deutschland haben wir dazu zwei Waldbest{\"a}nde als zwei kleine "Waldlandschaften" ausgew{\"a}hlt. In einem dieser beiden Best{\"a}nde haben wir ESBC (Enhancement of Structural Beta Complexity)-Behandlungen durchgef{\"u}hrt. Im zweiten, dem Kontrollbestand, werden wir die gleich Anzahl 50x50m Parzellen ohne ESBC einrichten. Auf allen Parzellen werden wir 18 taxonomische Artengruppen aller trophischer Ebenen und 21 {\"O}kosystemfunktionen, einschließlich der wichtigsten Funktionen in W{\"a}ldern der gem{\"a}ßigten Zonen, messen. Der statistische Rahmen wird eine umfassende Analyse der Biodiversit{\"a}t erm{\"o}glichen, indem verschiedenen Aspekte (taxonomische, funktionelle und phylogenetische Vielfalt) auf verschiedenen Skalenebenen (α-, β-, γ-Diversit{\"a}t) quantifiziert werden. Um die Gesamtdiversit{\"a}t zu kombinieren, werden wir das Konzept der Multidiversit{\"a}t auf die 18 Taxa anwenden. Wir werden neue Ans{\"a}tze zur Quantifizierung und Aufteilung der Multifunktionalit{\"a}t auf α- und β-Skalen verwenden und entwickeln. Durch die experimentelle Beschreibung des Zusammenhangs zwischen β-Diversit{\"a}t und Multifunktionalit{\"a}t in einer Reallandschaft wird unsere Forschung einen neuen Weg einschlagen. Dar{\"u}ber hinaus werden wir dazu beitragen, verbesserte Leitlinien f{\"u}r waldbauliche Konzepte und f{\"u}r das Management nat{\"u}rlicher St{\"o}rungen zu entwickeln, um Homogenisierungseffekte der Vergangenheit umzukehren.}, subject = {Wald{\"o}kosystem}, language = {en} } @article{AmbrožovaFinnbergFeldmannetal.2022, author = {Ambrožov{\´a}, Lucie and Finnberg, Sven and Feldmann, Benedikt and Buse, J{\"o}rn and Preuss, Henry and Ewald, J{\"o}rg and Thorn, Simon}, title = {Coppicing and topsoil removal promote diversity of dung-inhabiting beetles (Coleoptera: Scarabaeidae, Geotrupidae, Staphylinidae) in forests}, series = {Agricultural and Forest Entomology}, volume = {24}, journal = {Agricultural and Forest Entomology}, number = {1}, doi = {10.1111/afe.12472}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258296}, pages = {104-113}, year = {2022}, abstract = {Central European forests experience a substantial loss of open-forest organisms due to forest management and increasing nitrogen deposition. However, management strategies, removing different levels of nitrogen, have been rarely evaluated simultaneously. We tested the additive effects of coppicing and topsoil removal on communities of dung-inhabiting beetles compared to closed forests. We sampled 57 021 beetles, using baited pitfall traps exposed on 27 plots. Experimental treatments resulted in significantly different communities by promoting open-habitat species. While alpha diversity did not differ among treatments, gamma diversity of Geotrupidae and Scarabaeidae and beta diversity of Staphylinidae were higher in coppice than in forest. Functional diversity of rove beetles was higher in both, coppice and topsoil-removed plots, compared to control plots. This was likely driven by higher habitat heterogeneity in established forest openings. Five dung beetle species and four rove beetle species benefitted from coppicing, one red-listed dung beetle and two rove beetle species benefitted from topsoil removal. Our results demonstrate that dung-inhabiting beetles related to open forest patches can be promoted by both, coppicing and additional topsoil removal. A mosaic of coppice and bare-soil-rich patches can hence promote landscape-level gamma diversity of dung and rove beetles within forests.}, language = {en} } @article{RothDoerflerBaessleretal.2019, author = {Roth, Nicolas and Doerfler, Inken and B{\"a}ssler, Claus and Blaschke, Markus and Bussler, Heinz and Gossner, Martin M. and Heideroth, Antje and Thorn, Simon and Weisser, Wolfgang W. and M{\"u}ller, J{\"o}rg}, title = {Decadal effects of landscape-wide enrichment of dead wood on saproxylic organisms in beech forests of different historic management intensity}, series = {Diversity and Distributions}, volume = {25}, journal = {Diversity and Distributions}, number = {3}, doi = {10.1111/ddi.12870}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227061}, pages = {430-441}, year = {2019}, abstract = {Aim: European temperate forests have lost dead wood and the associated biodiversity owing to intensive management over centuries. Nowadays, some of these forests are being restored by enrichment with dead wood, but mostly only at stand scales. Here, we investigated effects of a seminal dead-wood enrichment strategy on saproxylic organisms at the landscape scale. Location: Temperate European beech forest in southern Germany. Methods: In a before-after control-impact design, we compared assemblages and gamma diversities of saproxylic organisms in strictly protected old-growth forest areas (reserves) and historically moderately and intensively managed forest areas before and a decade after starting a landscape-wide strategy of dead-wood enrichment. Results: Before enrichment with dead wood, the gamma diversity of saproxylic organisms in historically intensively managed forest stands was significantly lower than in reserves and historically moderately managed forest stands; this difference disappeared after 10 years of dead-wood enrichment. The species composition of beetles in forest stands of the three historical management intensities differed before the enrichment strategy, but a decade thereafter, the species compositions of previously intensively logged and forest reserve plots were similar. However, the differences in fungal species composition between historical management categories before and after 10 years of enrichment persisted. Main conclusions: Our results demonstrate that intentional enrichment of dead wood at the landscape scale is a powerful tool for rapidly restoring saproxylic beetle communities and for restoring wood-inhabiting fungal communities, which need longer than a decade for complete restoration. We propose that a strategy of area-wide active restoration combined with some permanent strict refuges is a promising means of promoting the biodiversity of age-long intensively managed Central European beech forests.}, language = {en} } @article{KortmannAngelstamMayeretal.2022, author = {Kortmann, Mareike and Angelstam, Per and Mayer, Marius and Leibl, Franz and Reichert, Jessica and Thorn, Christine and Thorn, Simon}, title = {Disturbance severity and human-nature relationships: A new approach to analyze people's well-being along a bark beetle infestation gradient}, series = {Forests}, volume = {13}, journal = {Forests}, number = {11}, issn = {1999-4907}, doi = {10.3390/f13111954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297429}, year = {2022}, abstract = {Contact to nature and greenspace is important for emotional well-being and can promote human health. Forest landscapes provide such access to greenspace, especially in protected areas. However, forested protected areas are impacted by natural disturbances such as bark beetle infestations. On the one hand, such disturbances have positive impacts on ecological processes and biodiversity. On the other hand, they have allegedly negative impacts on the recreational value of a landscape. Limited knowledge about the public's perception of forests subject to natural disturbances still hampers forest management to balance ecological functions and visitors' recreational experience. Thus, our aim was to determine how attitudes towards nature influence the personal well-being in a naturally disturbed landscape. We investigated self-reported well-being and attitudes towards nature in a standardized questionnaire-based survey of 1008 German inhabitants in an experimentally adapted landscape visualization. Self-reported well-being was generally highest in landscapes with relatively few bark-beetle-killed trees. This was especially the case for people who felt included with nature and preferred an appreciative use or preservation of nature. Conversely, people who had previously visited a national park with visible bark beetle infestations rated their personal well-being highest in landscapes with larger proportions of beetle-killed trees. Our results indicate that it is necessary to analyze people's knowledge about and relations to forest landscapes as well as concepts of nature conservation, natural landscapes, and biodiversity to gain a better understanding of people's perceptions of natural disturbances.}, language = {en} } @article{VogelBusslerFinnbergetal.2021, author = {Vogel, Sebastian and Bussler, Heinz and Finnberg, Sven and M{\"u}ller, J{\"o}rg and Stengel, Elisa and Thorn, Simon}, title = {Diversity and conservation of saproxylic beetles in 42 European tree species: an experimental approach using early successional stages of branches}, series = {Insect Conservation and Diversity}, volume = {14}, journal = {Insect Conservation and Diversity}, number = {1}, doi = {10.1111/icad.12442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218401}, pages = {132 -- 143}, year = {2021}, abstract = {Tree species diversity is important to maintain saproxylic beetle diversity in managed forests. Yet, knowledge about the conservational importance of single tree species and implications for forest management and conservation practices are lacking. We exposed freshly cut branch-bundles of 42 tree species, representing tree species native and non-native to Europe, under sun-exposed and shaded conditions for 1 year. Afterwards, communities of saproxylic beetles were reared ex situ for 2 years. We tested for the impact of tree species and sun exposure on alpha-, beta-, and gamma-diversity as well as composition of saproxylic beetle communities. Furthermore, the number of colonised tree species by each saproxylic beetle species was determined. Tree species had a lower impact on saproxylic beetle communities compared to sun exposure. The diversity of saproxylic beetles varied strongly among tree species, with highest alpha- and gamma-diversity found in Quercus petraea. Red-listed saproxylic beetle species occurred ubiquitously among tree species. We found distinct differences in the community composition of broadleaved and coniferous tree species, native and non-native tree species as well as sun-exposed and shaded deadwood. Our study enhances the understanding of the importance of previously understudied and non-native tree species for the diversity of saproxylic beetles. To improve conservation practices for saproxylic beetles and especially red-listed species, we suggest a stronger incorporation of tree species diversity and sun exposure of into forest management strategies, including the enrichment of deadwood from native and with a specific focus on locally rare or silviculturally less important tree species.}, language = {en} } @article{LeverkusThornGustafssonetal.2021, author = {Leverkus, Alexandro B. and Thorn, Simon and Gustafsson, Lena and Noss, Reed and M{\"u}ller, J{\"o}rg and Pausas, Juli G. and Lindenmayer, David B.}, title = {Environmental policies to cope with novel disturbance regimes-steps to address a world scientists' warning to humanity}, series = {Environmental Research Letters}, volume = {16}, journal = {Environmental Research Letters}, number = {2}, issn = {1748-9326}, doi = {10.1088/1748-9326/abdc5a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254180}, year = {2021}, abstract = {No abstract available.}, language = {en} } @article{ThornChaoGeorgievetal.2020, author = {Thorn, Simon and Chao, Anne and Georgiev, Konstadin B. and M{\"u}ller, J{\"o}rg and B{\"a}ssler, Claus and Campbell, John L. and Jorge, Castro and Chen, Yan-Han and Choi, Chang-Yong and Cobb, Tyler P. and Donato, Daniel C. and Durska, Ewa and Macdonald, Ellen and Feldhaar, Heike and Fontaine, Jospeh B. and Fornwalt, Paula J. and Hern{\´a}ndez Hern{\´a}ndez, Raquel Mar{\´i}a and Hutto, Richard L. and Koivula, Matti and Lee, Eun-Jae and Lindenmayer, David and Mikusinski, Grzegorz and Obrist, Martin K. and Perl{\´i}k, Michal and Rost, Josep and Waldron, Kaysandra and Wermelinger, Beat and Weiß, Ingmar and Zmihorski, Michal and Leverkus, Alexandro B.}, title = {Estimating retention benchmarks for salvage logging to protect biodiversity}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-18612-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230512}, year = {2020}, abstract = {Forests are increasingly affected by natural disturbances. Subsequent salvage logging, a widespread management practice conducted predominantly to recover economic capital, produces further disturbance and impacts biodiversity worldwide. Hence, naturally disturbed forests are among the most threatened habitats in the world, with consequences for their associated biodiversity. However, there are no evidence-based benchmarks for the proportion of area of naturally disturbed forests to be excluded from salvage logging to conserve biodiversity. We apply a mixed rarefaction/extrapolation approach to a global multi-taxa dataset from disturbed forests, including birds, plants, insects and fungi, to close this gap. We find that 757\% (mean +/- SD) of a naturally disturbed area of a forest needs to be left unlogged to maintain 90\% richness of its unique species, whereas retaining 50\% of a naturally disturbed forest unlogged maintains 73 +/- 12\% of its unique species richness. These values do not change with the time elapsed since disturbance but vary considerably among taxonomic groups. Salvage logging has become a common practice to gain economic returns from naturally disturbed forests, but it could have considerable negative effects on biodiversity. Here the authors use a recently developed statistical method to estimate that ca. 75\% of the naturally disturbed forest should be left unlogged to maintain 90\% of the species unique to the area.}, language = {en} } @article{RothHackerHeidrichetal.2021, author = {Roth, Nicolas and Hacker, Herrmann Heinrich and Heidrich, Lea and Friess, Nicolas and Garc{\´i}a-Barroas, Enrique and Habel, Jan Christian and Thorn, Simon and M{\"u}ler, J{\"o}rg}, title = {Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests}, series = {Ecography}, volume = {44}, journal = {Ecography}, number = {6}, doi = {10.1111/ecog.05522}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258731}, pages = {941-952}, year = {2021}, abstract = {The high diversity of insects has limited the volume of long-term community data with a high taxonomic resolution and considerable geographic replications, especially in forests. Therefore, trends and causes of changes are poorly understood. Here we analyse trends in species richness, abundance and biomass of nocturnal macro moths in three quantitative data sets collected over four decades in forests in southern Germany. Two local data sets, one from coppiced oak forests and one from high oak forests included 125K and 48K specimens from 559 and 532 species, respectively. A third regional data set, representing all forest types in the temperate zone of central Europe comprised 735K specimens from 848 species. Generalized additive mixed models revealed temporal declines in species richness (-38\%), abundance (-53\%) and biomass (-57\%) at the regional scale. These were more pronounced in plant host specialists and in dark coloured species. In contrast, the local coppiced oak forests showed an increase, in species richness (+62\%), while the high oak forests showed no clear trends. Left and right censoring as well as cross validation confirmed the robustness of the analyses, which led to four conclusions. First, the decline in insects appears in hyper diverse insect groups in forests and affects species richness, abundance and biomass. Second, the pronounced decline in host specialists suggests habitat loss as an important driver of the observed decline. Third, the more severe decline in dark species might be an indication of global warming as a potential driver. Fourth, the trends in coppiced oak forests indicate that maintaining complex and diverse forest ecosystems through active management may be a promising conservation strategy in order to counteract negative trends in biodiversity, alongside rewilding approaches.}, language = {en} }