@article{MuellerUlyshenSeiboldetal.2020, author = {M{\"u}ller, J{\"o}rg and Ulyshen, Mike and Seibold, Sebastian and Cadotte, Marc and Chao, Anne and B{\"a}ssler, Claus and Vogel, Sebastian and Hagge, Jonas and Weiß, Ingmar and Baldrian, Petr and Tl{\´a}skal, Vojtěch and Thorn, Simon}, title = {Primary determinants of communities in deadwood vary among taxa but are regionally consistent}, series = {Oikos}, volume = {129}, journal = {Oikos}, number = {10}, doi = {10.1111/oik.07335}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228201}, pages = {1579 -- 1588}, year = {2020}, abstract = {The evolutionary split between gymnosperms and angiosperms has far-reaching implications for the current communities colonizing trees. The inherent characteristics of dead wood include its role as a spatially scattered habitat of plant tissue, transient in time. Thus, local assemblages in deadwood forming a food web in a necrobiome should be affected not only by dispersal ability but also by host tree identity, the decay stage and local abiotic conditions. However, experiments simultaneously manipulating these potential community drivers in deadwood are lacking. To disentangle the importance of spatial distance and microclimate, as well as host identity and decay stage as drivers of local assemblages, we conducted two consecutive experiments, a 2-tree species and 6-tree species experiment with 80 and 72 tree logs, respectively, located in canopy openings and under closed canopies of a montane and a lowland forest. We sampled saproxylic beetles, spiders, fungi and bacterial assemblages from logs. Variation partitioning for community metrics based on a unified framework of Hill numbers showed consistent results for both studies: host identity was most important for sporocarp-detected fungal assemblages, decay stage and host tree for DNA-detected fungal assemblages, microclimate and decay stage for beetles and spiders and decay stage for bacteria. Spatial distance was of minor importance for most taxa but showed the strongest effects for arthropods. The contrasting patterns among the taxa highlight the need for multi-taxon analyses in identifying the importance of abiotic and biotic drivers of community composition. Moreover, the consistent finding of microclimate as the primary driver for saproxylic beetles compared to host identity shows, for the first time that existing evolutionary host adaptions can be outcompeted by local climate conditions in deadwood.}, language = {en} } @article{UhlerRedlichZhangetal.2021, author = {Uhler, Johannes and Redlich, Sarah and Zhang, Jie and Hothorn, Torsten and Tobisch, Cynthia and Ewald, J{\"o}rg and Thorn, Simon and Seibold, Sebastian and Mitesser, Oliver and Morin{\`e}re, J{\´e}r{\^o}me and Bozicevic, Vedran and Benjamin, Caryl S. and Englmeier, Jana and Fricke, Ute and Ganuza, Cristina and Haensel, Maria and Riebl, Rebekka and Rojas-Botero, Sandra and Rummler, Thomas and Uphus, Lars and Schmidt, Stefan and Steffan-Dewenter, Ingolf and M{\"u}ller, J{\"o}rg}, title = {Relationships of insect biomass and richness with land use along a climate gradient}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-26181-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265058}, year = {2021}, abstract = {Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42\%), whereas differences in total richness (-29\%) and the richness of threatened species (-56\%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines.}, language = {en} } @article{DoerflerCadotteWeisseretal.2020, author = {Doerfler, Inken and Cadotte, Marc W. and Weisser, Wolfgang W. and M{\"u}ller, J{\"o}rg and Gossner, Martin M. and Heibl, Christoph and B{\"a}ssler, Claus and Thorn, Simon and Seibold, Sebastian}, title = {Restoration-oriented forest management affects community assembly patterns of deadwood-dependent organisms}, series = {Journal of Applied Ecology}, volume = {57}, journal = {Journal of Applied Ecology}, number = {12}, doi = {10.1111/1365-2664.13741}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217918}, pages = {2429 -- 2440}, year = {2020}, abstract = {Land-use intensification leads to loss and degradation of habitats and is thus a major driver of biodiversity loss. Restoration strategies typically focus on promoting biodiversity but often neglect that land-use intensification could have changed the underlying mechanisms of community assembly. Since assembly mechanisms determine the diversity and composition of communities, we propose that evaluation of restoration strategies should consider effects of restoration on biodiversity and community assembly. Using a multi-taxon approach, we tested whether a strategy that promotes forest biodiversity by restoring deadwood habitats also affects assembly patterns. We assessed saproxylic (i.e. deadwood-dependent) beetles and fungi, as well as non-saproxylic plants and birds in 68 beech forest plots in southern Germany, 8 years after the commencement of a restoration project. To assess changes in community assembly, we analysed the patterns of functional-phylogenetic diversity, community-weighted mean (CWM) traits and their diversity. We hypothesized that restoration increases habitat amount and heterogeneity of deadwood and reduces canopy cover and thereby decreases the strength of environmental filters imposed by past silvicultural intensification, such as a low amount in deadwood. With the restoration of deadwood habitats, saproxylic beetle communities became less functionally-phylogenetically similar, whereas the assembly patterns of saproxylic fungi and non-saproxylic taxa remained unaffected by deadwood restoration. Among the traits analysed, deadwood diameter niche position of species was most strongly affected indicating that the enrichment of large deadwood objects led to lower functional-phylogenetical similarity of saproxylic beetles. Community assembly and traits of plants were mainly influenced by microclimate associated with changes in canopy cover. Synthesis and applications. Our results indicate that the positive effects of deadwood restoration on saproxylic beetle richness are associated with an increase in deadwood amount. This might be linked to an increase in deadwood heterogeneity, and therefore decreasing management-induced environmental filters. Deadwood enrichment can thus be considered an effective restoration strategy which reduces the negative effects of intense forest management on saproxylic taxa by not only promoting biodiversity but also by decreasing the environmental filters shaping saproxylic beetle communities, thus allowing the possibly for more interactions between species and a higher functional diversity.}, language = {en} } @article{ThornSeiboldLeverkusetal.2020, author = {Thorn, Simon and Seibold, Sebastian and Leverkus, Alexandro B and Michler, Thomas and M{\"u}ller, J{\"o}rg and Noss, Reed F and Stork, Nigel and Vogel, Sebastian and Lindenmayer, David B}, title = {The living dead: acknowledging life after tree death to stop forest degradation}, series = {Frontiers in Ecology and the Environment}, volume = {18}, journal = {Frontiers in Ecology and the Environment}, number = {9}, doi = {10.1002/fee.2252}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218575}, pages = {505 -- 512}, year = {2020}, abstract = {Global sustainability agendas focus primarily on halting deforestation, yet the biodiversity crisis resulting from the degradation of remaining forests is going largely unnoticed. Forest degradation occurs through the loss of key ecological structures, such as dying trees and deadwood, even in the absence of deforestation. One of the main drivers of forest degradation is limited awareness by policy makers and the public on the importance of these structures for supporting forest biodiversity and ecosystem function. Here, we outline management strategies to protect forest health and biodiversity by maintaining and promoting deadwood, and propose environmental education initiatives to improve the general awareness of the importance of deadwood. Finally, we call for major reforms to forest management to maintain and restore deadwood; large, old trees; and other key ecological structures.}, language = {en} } @article{HaggeMuellerBirkemoeetal.2021, author = {Hagge, Jonas and M{\"u}ller, J{\"o}rg and Birkemoe, Tone and Buse, J{\"o}rn and Christensen, Rune Haubo Bojesen and Gossner, Martin M. and Gruppe, Axel and Heibl, Christoph and Jarzabek-M{\"u}ller, Andrea and Seibold, Sebastian and Siitonen, Juha and Soutinho, Jo{\~a}o Gon{\c{c}}alo and Sverdrup-Thygeson, Anne and Thorn, Simon and Drag, Lukas}, title = {What does a threatened saproxylic beetle look like? Modelling extinction risk using a new morphological trait database}, series = {Journal of Animal Ecology}, volume = {90}, journal = {Journal of Animal Ecology}, number = {8}, doi = {10.1111/1365-2656.13512}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244717}, pages = {1934 -- 1947}, year = {2021}, abstract = {The extinction of species is a non-random process, and understanding why some species are more likely to go extinct than others is critical for conservation efforts. Functional trait-based approaches offer a promising tool to achieve this goal. In forests, deadwood-dependent (saproxylic) beetles comprise a major part of threatened species, but analyses of their extinction risk have been hindered by the availability of suitable morphological traits. To better understand the mechanisms underlying extinction in insects, we investigated the relationships between morphological features and the extinction risk of saproxylic beetles. Specifically, we hypothesised that species darker in colour, with a larger and rounder body, a lower mobility, lower sensory perception and more robust mandibles are at higher risk. We first developed a protocol for morphological trait measurements and present a database of 37 traits for 1,157 European saproxylic beetle species. Based on 13 selected, independent traits characterising aspects of colour, body shape, locomotion, sensory perception and foraging, we used a proportional-odds multiple linear mixed-effects model to model the German Red List categories of 744 species as an ordinal index of extinction risk. Six out of 13 traits correlated significantly with extinction risk. Larger species as well as species with a broad and round body had a higher extinction risk than small, slim and flattened species. Species with short wings had a higher extinction risk than those with long wings. On the contrary, extinction risk increased with decreasing wing load and with higher mandibular aspect ratio (shorter and more robust mandibles). Our study provides new insights into how morphological traits, beyond the widely used body size, determine the extinction risk of saproxylic beetles. Moreover, our approach shows that the morphological characteristics of beetles can be comprehensively represented by a selection of 13 traits. We recommend them as a starting point for functional analyses in the rapidly growing field of ecological and conservation studies of deadwood.}, language = {en} }