@unpublished{LoefflerMayerTrujilloVieraetal.2018, author = {L{\"o}ffler, Mona C. and Mayer, Alexander E. and Trujillo Viera, Jonathan and Loza Valdes, Angel and El-Merahib, Rabih and Ade, Carsten P. and Karwen, Till and Schmitz, Werner and Slotta, Anja and Erk, Manuela and Janaki-Raman, Sudha and Matesanz, Nuria and Torres, Jorge L. and Marcos, Miguel and Sabio, Guadalupe and Eilers, Martin and Schulze, Almut and Sumara, Grzegorz}, title = {Protein kinase D1 deletion in adipocytes enhances energy dissipation and protects against adiposity}, series = {The EMBO Journal}, journal = {The EMBO Journal}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176093}, year = {2018}, abstract = {Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others, activates G-protein coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the β3-adrenergic receptor (ADRB3) in a CCAAT/enhancerbinding protein (C/EBP)-α and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, loss of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.}, language = {en} } @article{LueningschroerSlottaHeimannetal.2020, author = {L{\"u}ningschr{\"o}r, Patrick and Slotta, Carsten and Heimann, Peter and Briese, Michael and Weikert, Ulrich M. and Massih, Bita and Appenzeller, Silke and Sendtner, Michael and Kaltschmidt, Christian and Kaltschmidt, Barbara}, title = {Absence of Plekhg5 Results in Myelin Infoldings Corresponding to an Impaired Schwann Cell Autophagy, and a Reduced T-Cell Infiltration Into Peripheral Nerves}, series = {Frontiers in Cellular Neuroscience}, volume = {14}, journal = {Frontiers in Cellular Neuroscience}, issn = {1662-5102}, doi = {10.3389/fncel.2020.00185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207538}, year = {2020}, abstract = {Inflammation and dysregulation of the immune system are hallmarks of several neurodegenerative diseases. An activated immune response is considered to be the cause of myelin breakdown in demyelinating disorders. In the peripheral nervous system (PNS), myelin can be degraded in an autophagy-dependent manner directly by Schwann cells or by macrophages, which are modulated by T-lymphocytes. Here, we show that the NF-κB activator Pleckstrin homology containing family member 5 (Plekhg5) is involved in the regulation of both Schwann cell autophagy and recruitment of T-lymphocytes in peripheral nerves during motoneuron disease. Plekhg5-deficient mice show defective axon/Schwann cell units characterized by myelin infoldings in peripheral nerves. Even at late stages, Plekhg5-deficient mice do not show any signs of demyelination and inflammation. Using RNAseq, we identified a transcriptional signature for an impaired immune response in sciatic nerves, which manifested in a reduced number of CD4\(^+\) and CD8\(^+\) T-cells. These findings identify Plekhg5 as a promising target to impede myelin breakdown in demyelinating PNS disorders.}, language = {en} } @article{LueningschroerBinottiDombertetal.2017, author = {L{\"u}ningschr{\"o}r, Patrick and Binotti, Beyenech and Dombert, Benjamin and Heimann, Peter and Perez-Lara, Angel and Slotta, Carsten and Thau-Habermann, Nadine and von Collenberg, Cora R. and Karl, Franziska and Damme, Markus and Horowitz, Arie and Maystadt, Isabelle and F{\"u}chtbauer, Annette and F{\"u}chtbauer, Ernst-Martin and Jablonka, Sibylle and Blum, Robert and {\"U}{\c{c}}eyler, Nurcan and Petri, Susanne and Kaltschmidt, Barbara and Jahn, Reinhard and Kaltschmidt, Christian and Sendtner, Michael}, title = {Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {678}, doi = {10.1038/s41467-017-00689-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170048}, year = {2017}, abstract = {Autophagy-mediated degradation of synaptic components maintains synaptic homeostasis but also constitutes a mechanism of neurodegeneration. It is unclear how autophagy of synaptic vesicles and components of presynaptic active zones is regulated. Here, we show that Pleckstrin homology containing family member 5 (Plekhg5) modulates autophagy of synaptic vesicles in axon terminals of motoneurons via its function as a guanine exchange factor for Rab26, a small GTPase that specifically directs synaptic vesicles to preautophagosomal structures. Plekhg5 gene inactivation in mice results in a late-onset motoneuron disease, characterized by degeneration of axon terminals. Plekhg5-depleted cultured motoneurons show defective axon growth and impaired autophagy of synaptic vesicles, which can be rescued by constitutively active Rab26. These findings define a mechanism for regulating autophagy in neurons that specifically targets synaptic vesicles. Disruption of this mechanism may contribute to the pathophysiology of several forms of motoneuron disease.}, language = {en} }