@article{WuZhaoHochreinetal.2023, author = {Wu, Hao and Zhao, Xiufeng and Hochrein, Sophia M. and Eckstein, Miriam and Gubert, Gabriela F. and Kn{\"o}pper, Konrad and Mansilla, Ana Maria and {\"O}ner, Arman and Doucet-Ladev{\`e}ze, Remi and Schmitz, Werner and Ghesqui{\`e}re, Bart and Theurich, Sebastian and Dudek, Jan and Gasteiger, Georg and Zernecke, Alma and Kobold, Sebastian and Kastenm{\"u}ller, Wolfgang and Vaeth, Martin}, title = {Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-42634-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358052}, year = {2023}, abstract = {T cell exhaustion is a hallmark of cancer and persistent infections, marked by inhibitory receptor upregulation, diminished cytokine secretion, and impaired cytolytic activity. Terminally exhausted T cells are steadily replenished by a precursor population (Tpex), but the metabolic principles governing Tpex maintenance and the regulatory circuits that control their exhaustion remain incompletely understood. Using a combination of gene-deficient mice, single-cell transcriptomics, and metabolomic analyses, we show that mitochondrial insufficiency is a cell-intrinsic trigger that initiates the functional exhaustion of T cells. At the molecular level, we find that mitochondrial dysfunction causes redox stress, which inhibits the proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α) and promotes the transcriptional and metabolic reprogramming of Tpex cells into terminally exhausted T cells. Our findings also bear clinical significance, as metabolic engineering of chimeric antigen receptor (CAR) T cells is a promising strategy to enhance the stemness and functionality of Tpex cells for cancer immunotherapy.}, language = {en} } @article{SchmitzStormsKochetal.2023, author = {Schmitz, Sophia M. and Storms, Sebastian and Koch, Alexander and Stier, Christine and Kroh, Andreas and Rheinwalt, Karl P. and Schipper, Sandra and Hamesch, Karim and Ulmer, Tom F. and Neumann, Ulf P. and Alizai, Patrick H.}, title = {Insulin resistance is the main characteristic of metabolically unhealthy obesity (MUO) associated with NASH in patients undergoing bariatric surgery}, series = {Biomedicines}, volume = {11}, journal = {Biomedicines}, number = {6}, issn = {2227-9059}, doi = {10.3390/biomedicines11061595}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319213}, year = {2023}, abstract = {(1) Background: Metabolically healthy obesity (MHO) is a concept that applies to obese patients without any elements of metabolic syndrome (metS). In turn, metabolically unhealthy obesity (MUO) defines the presence of elements of metS in obese patients. The components of MUO can be divided into subgroups regarding the elements of inflammation, lipid and glucose metabolism and cardiovascular disease. MUO patients appear to be at greater risk of developing non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) compared to MHO patients. The aim of this study was to evaluate the influence of different MUO components on NAFLD and NASH in patients with morbid obesity undergoing bariatric surgery. (2) Methods: 141 patients undergoing bariatric surgery from September 2015 and October 2021 at RWTH Aachen university hospital (Germany) were included. Patients were evaluated pre-operatively for characteristics of metS and MUO (HbA1c, HOMA, CRP, BMI, fasting glucose, LDL, TG, HDL and the presence of arterial hypertension). Intraoperatively, a liver biopsy was taken from the left liver lobe and evaluated for the presence of NAFLD or NASH. In ordinal regression analyses, different factors were evaluated for their influence on NAFLD and NASH. (3) Results: Mean BMI of the patients was 52.3 kg/m\(^2\) (36-74.8, SD 8.4). Together, the parameters HbA1c, HOMA, CRP, BMI, fasting glucose, LDL, TG, HDL and the presence of arterial hypertension accounted for a significant amount of variance in the outcome, with a likelihood ratio of χ\(^2\) (9) = 41.547, p < 0.001, for predicting the presence of NASH. Only HOMA was an independent predictor of NASH (B = 0.102, SE = 0.0373, p = 0.007). Evaluation of steatosis showed a similar trend (likelihood ratio χ\(^2\) (9) = 40.272, p < 0.001). Independent predictors of steatosis were HbA1c (B = 0.833, SE = 0.343, p = 0.015) and HOMA (B = 0.136, SE = 0.039, p < 0.001). (4) Conclusions: The above-mentioned model, including components of MUO, was significant for diagnosing NASH in patients with morbid obesity undergoing bariatric surgery. Out of the different subitems, HOMA independently predicted the presence of NASH and steatosis, while HbA1c independently predicted steatosis and fibrosis. Taken together, the parameter of glucose metabolism appears to be more accurate for the prediction of NASH than the parameters of lipid metabolism, inflammation or the presence of cardiovascular disease.}, language = {en} }