@article{WiegeringSchmidAndresetal.2014, author = {Wiegering, Verena and Schmid, Sophie and Andres, Oliver and Wirth, Clemens and Wiegering, Armin and Meyer, Thomas and Winkler, Beate and Schlegel, Paul G. and Eyrich, Matthias}, title = {Thrombosis as a complication of central venous access in pediatric patients with malignancies: a 5-year single-center experience}, doi = {10.1186/2052-1839-14-18}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110476}, year = {2014}, abstract = {Background Reliable central venous access (CVC) is essential for hematology-oncology patients since frequent puncture of peripheral veins—e.g., for chemotherapy, antibiotic administration, repeated blood sampling, and monitoring—can cause unacceptable pain and psychological trauma, as well as severe side effects in cases of extravasation of chemotherapy drugs. However, CVC lines still carry major risk factors, including thrombosis, infection (e.g., entry site, tunnel, and luminal infections), and catheter dislocation, leakage, or breakage. Methods Here we performed a retrospective database analysis to determine the incidence of CVC-associated thrombosis in a single-center cohort of 448 pediatric oncologic patients, and to analyze whether any subgroup of patients was at increased risk and thus might benefit from prophylactic anticoagulation. Results Of the 448 patients, 269 consecutive patients received a CVC, and 55 of these 269 patients (20\%) also had a thrombosis. Of these 55 patients, 43 had at least one CVC-associated thrombosis (total number of CVC-associated thrombosis: n = 52). Among all patients, the median duration of CVC exposure was 464 days. Regarding exposure time, no significant difference was found between patients with and without CVC-associated thrombosis. Subclavia catheters and advanced tumor stages seem to be the main risk factors for the development of CVC-associated thrombosis, whereas pharmacologic prophylaxis did not seem to have a relevant impact on the rate of thrombosis. Conclusions We conclude that pediatric surgeons and oncologists should pay close attention to ensuring optimal and accurate CVC placement, as this appears the most effective tool to minimize CVC-associated complications.}, language = {en} } @phdthesis{Schmid2017, author = {Schmid, Sophie Petra}, title = {katheterassoziierte Thrombosen bei p{\"a}diatrischen Patienten mit maligner Erkrankung - eine retrospektive Studie {\"u}ber f{\"u}nf Jahre}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149395}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Background: Reliable central venous access (CVC) is essential for hematology-oncology patients since frequent puncture of peripheral veins—e.g., for chemotherapy, antibiotic administration, repeated blood sampling, and monitoring—can cause unacceptable pain and psychological trauma, as well as severe side effects in cases of extravasation of chemotherapy drugs. However, CVC lines still carry major risk factors, including thrombosis, infection (e.g., entry site, tunnel, and luminal infections), and catheter dislocation, leakage, or breakage. Methods: Here we performed a retrospective database analysis to determine the incidence of CVC-associated thrombosis in a single-center cohort of 448 pediatric oncologic patients, and to analyze whether any subgroup of patients was at increased risk and thus might benefit from prophylactic anticoagulation. Results: Of the 448 patients, 269 consecutive patients received a CVC, and 55 of these 269 patients (20\%) also had a thrombosis. Of these 55 patients, 43 had at least one CVC-associated thrombosis (total number of CVC-associated thrombosis: n = 52). Among all patients, the median duration of CVC exposure was 464 days. Regarding exposure time, no significant difference was found between patients with and without CVC-associated thrombosis. Subclavia catheters and advanced tumor stages seem to be the main risk factors for the development of CVC-associated thrombosis, whereas pharmacologic prophylaxis did not seem to have a relevant impact on the rate of thrombosis. Conclusions: We conclude that pediatric surgeons and oncologists should pay close attention to ensuring optimal and accurate CVC placement, as this appears the most effective tool tom minimize CVC-associated complications.}, subject = {zentral ven{\"o}ser Katheter}, language = {de} } @article{HeuserGototPiotrowskietal.2017, author = {Heuser, Christoph and Gotot, Janine and Piotrowski, Eveline Christina and Philipp, Marie-Sophie and Courr{\`e}ges, Christina Johanna Felicia and Otte, Martin Sylvester and Guo, Linlin and Schmid-Burgk, Jonathan Leo and Hornung, Veit and Heine, Annkristin and Knolle, Percy Alexander and Garbi, Natalio and Serfling, Edgar and Evaristo, C{\´e}sar and Thaiss, Friedrich and Kurts, Christian}, title = {Prolonged IKK\(\beta\) Inhibition Improves Ongoing CTL Antitumor Responses by Incapacitating Regulatory T Cells}, series = {Cell Reports}, volume = {21}, journal = {Cell Reports}, number = {3}, doi = {10.1016/j.celrep.2017.09.082}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173643}, pages = {578-586}, year = {2017}, abstract = {Regulatory T cells (Tregs) prevent autoimmunity but limit antitumor immunity. The canonical NF-\(\kappa\)B signaling pathway both activates immunity and promotes thymic Treg development. Here, we report that mature Tregs continue to require NF-\(\kappa\)B signaling through I\(\kappa\)B-kinase \(\beta\) (IKK\(\beta\)) after thymic egress. Mice lacking IKK\(\beta\) in mature Tregs developed scurfy-like immunopathology due to death of peripheral FoxP3\(^+\) Tregs. Also, pharmacological IKK\(\beta\) inhibition reduced Treg numbers in the circulation by ~50\% and downregulated FoxP3 and CD25 expression and STAT5 phosphorylation. In contrast, activated cytotoxic T lymphocytes (CTLs) were resistant to IKK\(\beta\) inhibition because other pathways, in particular nuclear factor of activated T cells (NFATc1) signaling, sustained their survival and expansion. In a melanoma mouse model, IKK\(\beta\) inhibition after CTL cross-priming improved the antitumor response and delayed tumor growth. In conclusion, prolonged IKK\(\beta\) inhibition decimates circulating Tregs and improves CTL responses when commenced after tumor vaccination, indicating that IKK\(\beta\) represents a druggable checkpoint.}, language = {en} } @article{BousquetAntoBachertetal.2021, author = {Bousquet, Jean and Anto, Josep M. and Bachert, Claus and Haahtela, Tari and Zuberbier, Torsten and Czarlewski, Wienczyslawa and Bedbrook, Anna and Bosnic-Anticevich, Sinthia and Walter Canonica, G. and Cardona, Victoria and Costa, Elisio and Cruz, Alvaro A. and Erhola, Marina and Fokkens, Wytske J. and Fonseca, Joao A. and Illario, Maddalena and Ivancevich, Juan-Carlos and Jutel, Marek and Klimek, Ludger and Kuna, Piotr and Kvedariene, Violeta and Le, LTT and Larenas-Linnemann, D{\´e}sir{\´e}e E. and Laune, Daniel and Louren{\c{c}}o, Olga M. and Mel{\´e}n, Erik and Mullol, Joaquim and Niedoszytko, Marek and Odemyr, Mika{\"e}la and Okamoto, Yoshitaka and Papadopoulos, Nikos G. and Patella, Vincenzo and Pfaar, Oliver and Pham-Thi, Nh{\^a}n and Rolland, Christine and Samolinski, Boleslaw and Sheikh, Aziz and Sofiev, Mikhail and Suppli Ulrik, Charlotte and Todo-Bom, Ana and Tomazic, Peter-Valentin and Toppila-Salmi, Sanna and Tsiligianni, Ioanna and Valiulis, Arunas and Valovirta, Erkka and Ventura, Maria-Teresa and Walker, Samantha and Williams, Sian and Yorgancioglu, Arzu and Agache, Ioana and Akdis, Cezmi A. and Almeida, Rute and Ansotegui, Ignacio J. and Annesi-Maesano, Isabella and Arnavielhe, Sylvie and Basaga{\~n}a, Xavier and D. Bateman, Eric and B{\´e}dard, Annabelle and Bedolla-Barajas, Martin and Becker, Sven and Bennoor, Kazi S. and Benveniste, Samuel and Bergmann, Karl C. and Bewick, Michael and Bialek, Slawomir and E. Billo, Nils and Bindslev-Jensen, Carsten and Bjermer, Leif and Blain, Hubert and Bonini, Matteo and Bonniaud, Philippe and Bosse, Isabelle and Bouchard, Jacques and Boulet, Louis-Philippe and Bourret, Rodolphe and Boussery, Koen and Braido, Fluvio and Briedis, Vitalis and Briggs, Andrew and Brightling, Christopher E. and Brozek, Jan and Brusselle, Guy and Brussino, Luisa and Buhl, Roland and Buonaiuto, Roland and Calderon, Moises A. and Camargos, Paulo and Camuzat, Thierry and Caraballo, Luis and Carriazo, Ana-Maria and Carr, Warner and Cartier, Christine and Casale, Thomas and Cecchi, Lorenzo and Cepeda Sarabia, Alfonso M. and H. Chavannes, Niels and Chkhartishvili, Ekaterine and Chu, Derek K. and Cingi, Cemal and Correia de Sousa, Jaime and Costa, David J. and Courbis, Anne-Lise and Custovic, Adnan and Cvetkosvki, Biljana and D'Amato, Gennaro and da Silva, Jane and Dantas, Carina and Dokic, Dejan and Dauvilliers, Yves and De Feo, Giulia and De Vries, Govert and Devillier, Philippe and Di Capua, Stefania and Dray, Gerard and Dubakiene, Ruta and Durham, Stephen R. and Dykewicz, Mark and Ebisawa, Motohiro and Gaga, Mina and El-Gamal, Yehia and Heffler, Enrico and Emuzyte, Regina and Farrell, John and Fauquert, Jean-Luc and Fiocchi, Alessandro and Fink-Wagner, Antje and Fontaine, Jean-Fran{\c{c}}ois and Fuentes Perez, Jos{\´e} M. and Gemicioğlu, Bilun and Gamkrelidze, Amiran and Garcia-Aymerich, Judith and Gevaert, Philippe and Gomez, Ren{\´e} Maximiliano and Gonz{\´a}lez Diaz, Sandra and Gotua, Maia and Guldemond, Nick A. and Guzm{\´a}n, Maria-Antonieta and Hajjam, Jawad and Huerta Villalobos, Yunuen R. and Humbert, Marc and Iaccarino, Guido and Ierodiakonou, Despo and Iinuma, Tomohisa and Jassem, Ewa and Joos, Guy and Jung, Ki-Suck and Kaidashev, Igor and Kalayci, Omer and Kardas, Przemyslaw and Keil, Thomas and Khaitov, Musa and Khaltaev, Nikolai and Kleine-Tebbe, Jorg and Kouznetsov, Rostislav and Kowalski, Marek L. and Kritikos, Vicky and Kull, Inger and La Grutta, Stefania and Leonardini, Lisa and Ljungberg, Henrik and Lieberman, Philip and Lipworth, Brian and Lodrup Carlsen, Karin C. and Lopes-Pereira, Catarina and Loureiro, Claudia C. and Louis, Renaud and Mair, Alpana and Mahboub, Bassam and Makris, Micha{\"e}l and Malva, Joao and Manning, Patrick and Marshall, Gailen D. and Masjedi, Mohamed R. and Maspero, Jorge F. and Carreiro-Martins, Pedro and Makela, Mika and Mathieu-Dupas, Eve and Maurer, Marcus and De Manuel Keenoy, Esteban and Melo-Gomes, Elisabete and Meltzer, Eli O. and Menditto, Enrica and Mercier, Jacques and Micheli, Yann and Miculinic, Neven and Mihaltan, Florin and Milenkovic, Branislava and Mitsias, Dimitirios I. and Moda, Giuliana and Mogica-Martinez, Maria-Dolores and Mohammad, Yousser and Montefort, Steve and Monti, Ricardo and Morais-Almeida, Mario and M{\"o}sges, Ralph and M{\"u}nter, Lars and Muraro, Antonella and Murray, Ruth and Naclerio, Robert and Napoli, Luigi and Namazova-Baranova, Leyla and Neffen, Hugo and Nekam, Kristoff and Neou, Angelo and Nordlund, Bj{\"o}rn and Novellino, Ettore and Nyembue, Dieudonn{\´e} and O'Hehir, Robyn and Ohta, Ken and Okubo, Kimi and Onorato, Gabrielle L. and Orlando, Valentina and Ouedraogo, Solange and Palamarchuk, Julia and Pali-Sch{\"o}ll, Isabella and Panzner, Peter and Park, Hae-Sim and Passalacqua, Gianni and P{\´e}pin, Jean-Louis and Paulino, Ema and Pawankar, Ruby and Phillips, Jim and Picard, Robert and Pinnock, Hilary and Plavec, Davor and Popov, Todor A. and Portejoie, Fabienne and Price, David and Prokopakis, Emmanuel P. and Psarros, Fotis and Pugin, Benoit and Puggioni, Francesca and Quinones-Delgado, Pablo and Raciborski, Filip and Rajabian-S{\"o}derlund, Rojin and Regateiro, Frederico S. and Reitsma, Sietze and Rivero-Yeverino, Daniela and Roberts, Graham and Roche, Nicolas and Rodriguez-Zagal, Erendira and Rolland, Christine and Roller-Wirnsberger, Regina E. and Rosario, Nelson and Romano, Antonino and Rottem, Menachem and Ryan, Dermot and Salim{\"a}ki, Johanna and Sanchez-Borges, Mario M. and Sastre, Joaquin and Scadding, Glenis K. and Scheire, Sophie and Schmid-Grendelmeier, Peter and Sch{\"u}nemann, Holger J. and Sarquis Serpa, Faradiba and Shamji, Mohamed and Sisul, Juan-Carlos and Sofiev, Mikhail and Sol{\´e}, Dirceu and Somekh, David and Sooronbaev, Talant and Sova, Milan and Spertini, Fran{\c{c}}ois and Spranger, Otto and Stellato, Cristiana and Stelmach, Rafael and Thibaudon, Michel and To, Teresa and Toumi, Mondher and Usmani, Omar and Valero, Antonio A. and Valenta, Rudolph and Valentin-Rostan, Marylin and Pereira, Marilyn Urrutia and van der Kleij, Rianne and Van Eerd, Michiel and Vandenplas, Olivier and Vasankari, Tuula and Vaz Carneiro, Antonio and Vezzani, Giorgio and Viart, Fr{\´e}d{\´e}ric and Viegi, Giovanni and Wallace, Dana and Wagenmann, Martin and Wang, De Yun and Waserman, Susan and Wickman, Magnus and Williams, Dennis M. and Wong, Gary and Wroczynski, Piotr and Yiallouros, Panayiotis K. and Yusuf, Osman M. and Zar, Heather J. and Zeng, St{\´e}phane and Zernotti, Mario E. and Zhang, Luo and Shan Zhong, Nan and Zidarn, Mihaela}, title = {ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice}, series = {Allergy}, volume = {76}, journal = {Allergy}, number = {1}, doi = {10.1111/all.14422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228339}, pages = {168 -- 190}, year = {2021}, abstract = {Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.}, language = {en} }