@article{BrehonyTrotterRamsayetal.2014, author = {Brehony, Carina and Trotter, Caronline L. and Ramsay, Mary E. and Chandra, Manosree and Jolley, Keith A. and van der Ende, Arie and Carion, Fran{\c{c}}oise and Berthelsen, Lene and Hoffmann, Steen and Harðard{\´o}ttir, Hj{\"o}rd{\´i}s and Vazques, Julio A. and Murphy, Karen and Toropainen, Maija and Cani{\c{c}}a, Manuela and Ferreira, Eugenia and Diggle, Mathew and Edwards, Giles F. and Taha, Muhamed-Kheir and Stefanelli, Paola and Kriz, Paula and Gray, Steve J. and Fox, Andrew J. and Jacobsson, Susanne and Claus, Heike and Vogel, Ulrich and Tzanakaki, Georgina and Heuberger, Sigrid and Caugant, Dominique A. and Frosch, Matthias and Maiden, Martin C. J.}, title = {Implications of Differential Age Distribution of Disease-Associated Meningococcal Lineages for Vaccine Development}, series = {Clinical and Vaccine Immunology : CVI}, volume = {21}, journal = {Clinical and Vaccine Immunology : CVI}, number = {6}, doi = {10.1128/cvi.00133-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120808}, pages = {847-53}, year = {2014}, abstract = {New vaccines targeting meningococci expressing serogroup B polysaccharide have been developed, with some being licensed in Europe. Coverage depends on the distribution of disease-associated genotypes, which may vary by age. It is well established that a small number of hyperinvasive lineages account for most disease, and these lineages are associated with particular antigens, including vaccine candidates. A collection of 4,048 representative meningococcal disease isolates from 18 European countries, collected over a 3-year period, were characterized by multilocus sequence typing (MLST). Age data were available for 3,147 isolates. The proportions of hyperinvasive lineages, identified as particular clonal complexes (ccs) by MLST, differed among age groups. Subjects <1 year of age experienced lower risk of sequence type 11 (ST-11) cc, ST-32 cc, and ST-269 cc disease and higher risk of disease due to unassigned STs, 1- to 4-year-olds experienced lower risk of ST-11 cc and ST-32 cc disease, 5- to 14-year-olds were less likely to experience ST-11 cc and ST-269 cc disease, and ≥25-year-olds were more likely to experience disease due to less common ccs and unassigned STs. Younger and older subjects were vulnerable to a more diverse set of genotypes, indicating the more clonal nature of genotypes affecting adolescents and young adults. Knowledge of temporal and spatial diversity and the dynamics of meningococcal populations is essential for disease control by vaccines, as coverage is lineage specific. The nonrandom age distribution of hyperinvasive lineages has consequences for the design and implementation of vaccines, as different variants, or perhaps targets, may be required for different age groups.}, language = {en} } @article{SchmidtkeFindeissSharmaetal.2011, author = {Schmidtke, Cornelius and Findeiß, Sven and Sharma, Cynthia M. and Kuhfuss, Juliane and Hoffmann, Steve and Vogel, J{\"o}rg and Stadler, Peter F. and Bonas, Ulla}, title = {Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions}, series = {Nucleic Acids Research}, volume = {40}, journal = {Nucleic Acids Research}, number = {5}, doi = {10.1093/nar/gkr904}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131781}, pages = {2020 -- 2031}, year = {2011}, abstract = {The Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is an important model to elucidate the mechanisms involved in the interaction with the host. To gain insight into the transcriptome of the Xcv strain 85-10, we took a differential RNA sequencing (dRNA-seq) approach. Using a novel method to automatically generate comprehensive transcription start site (TSS) maps we report 1421 putative TSSs in the Xcv genome. Genes in Xcv exhibit a poorly conserved -10 promoter element and no consensus Shine-Dalgarno sequence. Moreover, 14\% of all mRNAs are leaderless and 13\% of them have unusually long 5'-UTRs. Northern blot analyses confirmed 16 intergenic small RNAs and seven cis-encoded antisense RNAs in Xcv. Expression of eight intergenic transcripts was controlled by HrpG and HrpX, key regulators of the Xcv type III secretion system. More detailed characterization identified sX12 as a small RNA that controls virulence of Xcv by affecting the interaction of the pathogen and its host plants. The transcriptional landscape of Xcv is unexpectedly complex, featuring abundant antisense transcripts, alternative TSSs and clade-specific small RNAs.}, language = {en} } @article{LopezKleinheinzAukemaetal.2019, author = {L{\´o}pez, Cristina and Kleinheinz, Kortine and Aukema, Sietse M. and Rohde, Marius and Bernhart, Stephan H. and H{\"u}bschmann, Daniel and Wagener, Rabea and Toprak, Umut H. and Raimondi, Francesco and Kreuz, Markus and Waszak, Sebastian M. and Huang, Zhiqin and Sieverling, Lina and Paramasivam, Nagarajan and Seufert, Julian and Sungalee, Stephanie and Russell, Robert B. and Bausinger, Julia and Kretzmer, Helene and Ammerpohl, Ole and Bergmann, Anke K. and Binder, Hans and Borkhardt, Arndt and Brors, Benedikt and Claviez, Alexander and Doose, Gero and Feuerbach, Lars and Haake, Andrea and Hansmann, Martin-Leo and Hoell, Jessica and Hummel, Michael and Korbel, Jan O. and Lawerenz, Chris and Lenze, Dido and Radlwimmer, Bernhard and Richter, Julia and Rosenstiel, Philip and Rosenwald, Andreas and Schilhabel, Markus B. and Stein, Harald and Stilgenbauer, Stephan and Stadler, Peter F. and Szczepanowski, Monika and Weniger, Marc A. and Zapatka, Marc and Eils, Roland and Lichter, Peter and Loeffler, Markus and M{\"o}ller, Peter and Tr{\"u}mper, Lorenz and Klapper, Wolfram and Hoffmann, Steve and K{\"u}ppers, Ralf and Burkhardt, Birgit and Schlesner, Matthias and Siebert, Reiner}, title = {Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, organization = {ICGC MMML-Seq Consortium}, doi = {10.1038/s41467-019-08578-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237281}, year = {2019}, abstract = {Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing.}, language = {en} }