@article{RakosyStreinzerPaulusetal.2012, author = {Rakosy, Demetra and Streinzer, Martin and Paulus, Hannes F. and Spaethe, Johannes}, title = {Floral visual signal increases reproductive success in a sexually deceptive orchid}, series = {Arthropod-Plant Interactions}, volume = {6}, journal = {Arthropod-Plant Interactions}, number = {4}, doi = {10.1007/s11829-012-9217-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127209}, pages = {671-681}, year = {2012}, abstract = {Sexually deceptive orchids mimic signals emitted by female insects in order to attract mate-searching males. Specific attraction of the targeted pollinator is achieved by sex pheromone mimicry, which constitutes the major attraction channel. In close vicinity of the flower, visual signals may enhance attraction, as was shown recently in the sexually deceptive orchid Ophrys heldreichii. Here, we conducted an in situ manipulation experiment in two populations of O. heldreichii on Crete to investigate whether the presence/absence of the conspicuous pink perianth affects reproductive success in two natural orchid populations. We estimated reproductive success of three treatment groups (with intact, removed and artificial perianth) throughout the flowering period as pollinaria removal (male reproductive success) and massulae deposition (female reproductive success). Reproductive success was significantly increased by the presence of a strong visual signal—the conspicuous perianth—in one study population, however, not in the second, most likely due to the low pollinator abundance in the latter population. This study provides further evidence that the coloured perianth in O. heldreichii is adaptive and thus adds to the olfactory signal to maximise pollinator attraction and reproductive success.}, language = {en} } @article{StejskalStreinzerDyeretal.2015, author = {Stejskal, Kerstin and Streinzer, Martin and Dyer, Adrian and Paulus, Hannes F. and Spaethe, Johannes}, title = {Functional Significance of Labellum Pattern Variation in a Sexually Deceptive Orchid (Ophrys heldreichii): Evidence of Individual Signature Learning Effects}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0142971}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137582}, pages = {e0142971}, year = {2015}, abstract = {Mimicking female insects to attract male pollinators is an important strategy in sexually deceptive orchids of the genus Ophrys, and some species possess flowers with conspicuous labellum patterns. The function of the variation of the patterns remains unresolved, with suggestions that these enhance pollinator communication. We investigated the possible function of the labellum pattern in Ophrys heldreichii, an orchid species in which the conspicuous and complex labellum pattern contrasts with a dark background. The orchid is pollinated exclusively by males of the solitary bee, Eucera berlandi. Comparisons of labellum patterns revealed that patterns within inflorescences are more similar than those of other conspecific plants. Field observations showed that the males approach at a great speed and directly land on flowers, but after an unsuccessful copulation attempt, bees hover close and visually scan the labellum pattern for up to a minute. Learning experiments conducted with honeybees as an accessible model of bee vision demonstrated that labellum patterns of different plants can be reliably learnt; in contrast, patterns of flowers from the same inflorescence could not be discriminated. These results support the hypothesis that variable labellum patterns in O. heldreichii are involved in flower-pollinator communication which would likely help these plants to avoid geitonogamy.}, language = {en} } @article{StreinzerBrockmannNagarajaetal.2013, author = {Streinzer, Martin and Brockmann, Axel and Nagaraja, Narayanappa and Spaethe, Johannes}, title = {Sex and Caste-Specific Variation in Compound Eye Morphology of Five Honeybee Species}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0057702}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96412}, year = {2013}, abstract = {Ranging from dwarfs to giants, the species of honeybees show remarkable differences in body size that have placed evolutionary constrains on the size of sensory organs and the brain. Colonies comprise three adult phenotypes, drones and two female castes, the reproductive queen and sterile workers. The phenotypes differ with respect to tasks and thus selection pressures which additionally constrain the shape of sensory systems. In a first step to explore the variability and interaction between species size-limitations and sex and caste-specific selection pressures in sensory and neural structures in honeybees, we compared eye size, ommatidia number and distribution of facet lens diameters in drones, queens and workers of five species (Apis andreniformis, A. florea, A. dorsata, A. mellifera, A. cerana). In these species, male and female eyes show a consistent sex-specific organization with respect to eye size and regional specialization of facet diameters. Drones possess distinctly enlarged eyes with large dorsal facets. Aside from these general patterns, we found signs of unique adaptations in eyes of A. florea and A. dorsata drones. In both species, drone eyes are disproportionately enlarged. In A. dorsata the increased eye size results from enlarged facets, a likely adaptation to crepuscular mating flights. In contrast, the relative enlargement of A. florea drone eyes results from an increase in ommatidia number, suggesting strong selection for high spatial resolution. Comparison of eye morphology and published mating flight times indicates a correlation between overall light sensitivity and species-specific mating flight times. The correlation suggests an important role of ambient light intensities in the regulation of species-specific mating flight times and the evolution of the visual system. Our study further deepens insights into visual adaptations within the genus Apis and opens up future perspectives for research to better understand the timing mechanisms and sensory physiology of mating related signals.}, language = {en} } @phdthesis{Streinzer2013, author = {Streinzer, Martin}, title = {Sexual dimorphism of the sensory systems in bees (Hymenoptera, Apoidea) and the evolution of sex-specific adaptations in the context of mating behavior}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78689}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Bees have had an intimate relationship with humans for millennia, as pollinators of fruit, vegetable and other crops and suppliers of honey, wax and other products. This relationship has led to an extensive understanding of their ecology and behavior. One of the most comprehensively understood species is the Western honeybee, Apis mellifera. Our understanding of sex-specific investment in other bees, however, has remained superficial. Signals and cues employed in bee foraging and mating behavior are reasonably well understood in only a handful of species and functional adaptations are described in some species. I explored the variety of sensory adaptations in three model systems within the bees. Females share a similar ecology and similar functional morphologies are to be expected. Males, engage mainly in mating behavior. A variety of male mating strategies has been described which differ in their spatiotemporal features and in the signals and cues involved, and thus selection pressures. As a consequence, males' sensory systems are more diverse than those of females. In the first part I studied adaptations of the visual system in honeybees. I compared sex and caste-specific eye morphology among 5 species (Apis andreniformis, A. cerana, A. dorsata, A. florea, A. mellifera). I found a strong correlation between body size and eye size in both female castes. Queens have a relatively reduced visual system which is in line with the reduced role of visual perception in their life history. Workers differed in eye size and functional morphology, which corresponds to known foraging differences among species. In males, the eyes are conspicuously enlarged in all species, but a disproportionate enlargement was found in two species (A. dorsata, A. florea). I further demonstrate a correlation between male visual parameters and mating flight time, and propose that light intensities play an important role in the species-specific timing of mating flights. In the second study I investigated eye morphology differences among two phenotypes of drones in the Western honeybee. Besides normal-sized drones, smaller drones are reared in the colony, and suffer from reduced reproductive success. My results suggest that the smaller phenotype does not differ in spatial resolution of its visual system, but suffers from reduced light and contrast sensitivity which may exacerbate the reduction in reproductive success caused by other factors. In the third study I investigated the morphology of the visual system in bumblebees. I explored the association between male eye size and mating behavior and investigated the diversity of compound eye morphology among workers, queens and males in 11 species. I identified adaptations of workers that correlate with distinct foraging differences among species. Bumblebee queens must, in contrast to honeybees, fulfill similar tasks as workers in the first part of their life, and correspondingly visual parameters are similar among both female castes. Enlarged male eyes are found in several subgenera and have evolved several times independently within the genus, which I demonstrate using phylogenetic informed statistics. Males of these species engage in visually guided mating behavior. I find similarities in the functional eye morphology among large-eyed males in four subgenera, suggesting convergent evolution as adaptation to similar visual tasks. In the remaining species, males do not differ significantly from workers in their eye morphology. In the fourth study I investigated the sexual dimorphism of the visual system in a solitary bee species. Males of Eucera berlandi patrol nesting sites and compete for first access to virgin females. Males have enlarged eyes and better spatial resolution in their frontal eye region. In a behavioral study, I tested the effect of target size and speed on male mate catching success. 3-D reconstructions of the chasing flights revealed that angular target size is an important parameter in male chasing behavior. I discuss similarities to other insects that face similar problems in visual target detection. In the fifth study I examined the olfactory system of E. berlandi. Males have extremely long antennae. To investigate the anatomical grounds of this elongation I studied antennal morphology in detail in the periphery and follow the sexual dimorphism into the brain. Functional adaptations were found in males (e.g. longer antennae, a multiplication of olfactory sensilla and receptor neurons, hypertrophied macroglomeruli, a numerical reduction of glomeruli in males and sexually dimorphic investment in higher order processing regions in the brain), which were similar to those observed in honeybee drones. The similarities and differences are discussed in the context of solitary vs. eusocial lifestyle and the corresponding consequences for selection acting on males.}, subject = {Biene}, language = {en} } @article{StreinzerChakravortyNeumayeretal.2019, author = {Streinzer, Martin and Chakravorty, Jharna and Neumayer, Johann and Megu, Karsing and Narah, Jaya and Schmitt, Thomas and Bharti, Himender and Spaethe, Johannes and Brockmann, Axel}, title = {Species composition and elevational distribution of bumble bees (Hymenoptera, Apidae, Bombus Latreille) in the East Himalaya, Arunachal Pradesh, India}, series = {ZooKeys}, volume = {851}, journal = {ZooKeys}, doi = {10.3897/zookeys.851.32956}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201937}, pages = {71-89}, year = {2019}, abstract = {The East Himalaya is one of the world's most biodiverse ecosystems. However, very little is known about the abundance and distribution of many plant and animal taxa in this region. Bumble bees are a group of cold-adapted and high elevation insects that fulfil an important ecological and economical function as pollinators of wild and agricultural flowering plants and crops. The Himalayan mountain range provides ample suitable habitats for bumble bees. Systematic study of Himalayan bumble bees began a few decades ago and the main focus has centred on the western region, while the eastern part of the mountain range has received little attention and only a few species have been verified. During a three-year survey, more than 700 bumble bee specimens of 21 species were collected in Arunachal Pradesh, the largest of the north-eastern states of India. The material included a range of species that were previously known from a limited number of collected specimens, which highlights the unique character of the East Himalayan ecosystem. Our results are an important first step towards a future assessment of species distribution, threat, and conservation. Clear elevation patterns of species diversity were observed, which raise important questions about the functional adaptations that allow bumble bees to thrive in this particularly moist region in the East Himalaya.}, language = {en} }