@phdthesis{Rajab2021, author = {Rajab, Suhaila}, title = {Untersuchung von Sub-Millisekunden Dynamiken und allosterischer Kommunikation in Ligandenbindedom{\"a}nen ionotroper Glutamatrezeptoren}, doi = {10.25972/OPUS-24494}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244946}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Ionotrope Glutamatrezeptoren (iGluRs) sind ligandengesteuerte Ionenkan{\"a}le und vermitteln den Großteil der exzitatorischen Signalweiterleitung im gesamten zentralen Nervensystem. Dar{\"u}ber hinaus spielen iGluRs eine entscheidende Rolle bei der neuronalen Entwicklung und Funktion, einschließlich Lernprozessen und Ged{\"a}chtnisbildung. Da eine Fehlfunktion dieser Rezeptoren mit zahlreichen neurodegenerativen Erkrankungen verbunden ist, stellen iGluRs zudem wichtige Zielproteine f{\"u}r die pharmakologische Wirkstoffentwicklung dar. Im Allgemeinen wird zwischen drei Untergruppen ionotroper Glutamatrezeptoren unterschieden, welche aufgrund ihrer Selektivit{\"a}t f{\"u}r einen bestimmten Liganden benannt sind: AMPA-, Kainate-, und NMDA-Rezeptoren. Die iGluRs jeder dieser Untergruppen bestehen in der Regel aus vier Untereinheiten, welche wiederum aus vier semiautonomen Dom{\"a}nen aufgebaut sind: (i) die aminoterminale Dom{\"a}ne (ATD), (ii) die Ligandenbindedom{\"a}ne (LBD), (iii) die Transmembrandom{\"a}ne (TMD) und (iv) die carboxyterminale Dom{\"a}ne (CTD). Die Ligandenbindedom{\"a}ne, welche wiederum aus zwei Lobes (D1 und D2) besteht und in ihrer Struktur einer Muschelschale {\"a}hnelt, vollzieht bei Bindung eines Neurotransmitters eine Konformations{\"a}nderung, wobei sie sich um den gebundenen Agonisten herumschließt. Diese Konformations{\"a}nderung der LBD wird auf die Transmembrandom{\"a}ne, welche den membran{\"u}berspannenden Ionenkanal ausbildet, {\"u}bertragen, was in einer Umlagerung der Transmembranhelices und infolgedessen der {\"O}ffnung des Ionenkanals resultiert. Die Konformations{\"a}nderung der LBD ist demnach die treibende Kraft, welche dem {\"O}ffnen und Schließen des Ionenkanals zugrunde liegt. Aus diesem Grund stellt die isolierte Ligandenbindedom{\"a}ne, welche als l{\"o}sliches Protein hergestellt werden kann, ein etabliertes Modellsystem zur Untersuchung der strukturellen und funktionellen Zusammenh{\"a}nge innerhalb des Funktionsmechanismus ionotroper Glutamatrezeptoren dar. Im Rahmen dieser Arbeit wurden die Konformationsdynamiken der in Escherichia coli-Bakterien exprimierten isolierten Ligandenbindedom{\"a}nen der drei homologen Untergruppen - AMPA-, Kainate- und NMDA-Rezeptoren - sowohl als Monomer als auch als Dimer untersucht. Hierbei wurden im ungebundenen Apo-Zustand der Proteine signifikante Kinetiken im Bereich von Nanosekunden bis Mikrosekunden festgestellt, welche bei Bindung eines Agonisten sowie bei Dimerisierung erheblichen Ver{\"a}nderungen zeigen. Dar{\"u}ber hinaus wurde allosterische Kommunikation zwischen den LBDs der NMDA-Untergruppe untersucht, wobei in der Tat ein deutlicher allosterischer Effekt in Bezug auf die Konformationsdynamiken der Proteine gemessen werden konnte. Weiterhin wurde ein PET-FCS-basiertes Verfahren zur Messung der Dissoziationskonstante der Bindung eines Liganden an die LBD eines AMPA-Rezeptors entwickelt. Zuletzt wurde außerdem ermittelt, ob ein Unterschied zwischen vollen und partiellen Agonisten hinsichtlich ihres Einflusses auf die Konformationsdynamiken einer AMPA-Rezeptor LBD besteht, was nachgewiesenermaßen nicht der Fall ist. Alle Messungen wurden auf Einzelmolek{\"u}lebene auf Zeitskalen von Nanosekunden bis Millisekunden basierend auf Fluoreszenzfluktuationen unter Verwendung des photoinduzierten Elektronentransfers (PET) in Kombination mit Korrelationsspektroskopie (PET-FCS) durchgef{\"u}hrt. Zu diesem Zweck wurden PET-basierte Fluoreszenzsonden entwickelt, um Konformations{\"a}nderungen auf einer r{\"a}umlichen Skala von einem Nanometer zu detektieren. Durch die Experimente innerhalb dieser Arbeit konnte gezeigt werden, dass die PET-FCS-Methode eine vielversprechende Erg{\"a}nzung zu allen bisher bestehenden Methoden zur Untersuchung der Konformationsdynamiken der Ligandenbindedom{\"a}ne ionotroper Glutamatrezeptoren darstellt und daher eine aussichtsreiche M{\"o}glichkeit zur Erweiterung des zuk{\"u}nftigen Verst{\"a}ndnisses der Funktionsweise von iGluRs bietet.}, subject = {Fluoreszenzkorrelationsspektroskopie}, language = {de} } @article{RajabBisminSchwarzeetal.2021, author = {Rajab, Suhaila and Bismin, Leah and Schwarze, Simone and Pinggera, Alexandra and Greger, Ingo H. and Neuweiler, Hannes}, title = {Allosteric coupling of sub-millisecond clamshell motions in ionotropic glutamate receptor ligand-binding domains}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-021-02605-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261678}, year = {2021}, abstract = {Ionotropic glutamate receptors (iGluRs) mediate signal transmission in the brain and are important drug targets. Structural studies show snapshots of iGluRs, which provide a mechanistic understanding of gating, yet the rapid motions driving the receptor machinery are largely elusive. Here we detect kinetics of conformational change of isolated clamshell-shaped ligand-binding domains (LBDs) from the three major iGluR sub-types, which initiate gating upon binding of agonists. We design fluorescence probes to measure domain motions through nanosecond fluorescence correlation spectroscopy. We observe a broad kinetic spectrum of LBD dynamics that underlie activation of iGluRs. Microsecond clamshell motions slow upon dimerization and freeze upon binding of full and partial agonists. We uncover allosteric coupling within NMDA LBD hetero-dimers, where binding of L-glutamate to the GluN2A LBD stalls clamshell motions of the glycine-binding GluN1 LBD. Our results reveal rapid LBD dynamics across iGluRs and suggest a mechanism of negative allosteric cooperativity in NMDA receptors.}, language = {en} } @article{HeibyRajabRatetal.2017, author = {Heiby, Julia C. and Rajab, Suhaila and Rat, Charlotte and Johnson, Christopher M. and Neuweiler, Hannes}, title = {Conservation of folding and association within a family of spidroin N-terminal domains}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-16881-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159272}, pages = {16789}, year = {2017}, abstract = {Web spiders synthesize silk fibres, nature's toughest biomaterial, through the controlled assembly of fibroin proteins, so-called spidroins. The highly conserved spidroin N-terminal domain (NTD) is a pH-driven self-assembly device that connects spidroins to super-molecules in fibres. The degree to which forces of self-assembly is conserved across spider glands and species is currently unknown because quantitative measures are missing. Here, we report the comparative investigation of spidroin NTDs originating from the major ampullate glands of the spider species Euprosthenops australis, Nephila clavipes, Latrodectus hesperus, and Latrodectus geometricus. We characterized equilibrium thermodynamics and kinetics of folding and self-association using dynamic light scattering, stopped-flow fluorescence and circular dichroism spectroscopy in combination with thermal and chemical denaturation experiments. We found cooperative two-state folding on a sub-millisecond time scale through a late transition state of all four domains. Stability was compromised by repulsive electrostatic forces originating from clustering of point charges on the NTD surface required for function. pH-driven dimerization proceeded with characteristic fast kinetics yielding high affinities. Results showed that energetics and kinetics of NTD self-assembly are highly conserved across spider species despite the different silk mechanical properties and web geometries they produce.}, language = {en} }